Fast Fourier Transform Algorithm of Length 50

One of presentations of splitting Fourier transform algorithm of length 50 is presented in fig. 1.


[image: image1.wmf]50

2

25

5

5


Fig. 1. Proposed splitting Fourier transform of length 50 onto short transforms.

First step. Splitting original transform onto transforms of lengthes 25 and 2 (algorithm “fft25x2”).

According to Good-Thomas algorithm [Blahut, pp. ____]:

1. Samples of input signal are ordered into two-dimensional table 25х2 (see table 1).

Table 1. Ordering input data for algorithm “fft25x2” into two-dimensional table.

	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24

	0
	0
	26
	2
	28
	4
	30
	6
	32
	8
	34
	10
	36
	12
	38
	14
	40
	16
	42
	18
	44
	20
	46
	22
	48
	24

	1
	25
	1
	27
	3
	29
	5
	31
	7
	33
	9
	35
	11
	37
	13
	39
	15
	41
	17
	43
	19
	45
	21
	47
	23
	49


2. Rows are processed by 25-point Fourier transforms (two 25-point transforms), then columns are processed by 2-point Fourier transforms (twenty five 2-point transforms).

3. Output data are read according to table 2.

Table 2. Reading output data of algorithm “fft25x2” from two-dimensional table into output vector.

	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24

	0
	0
	2
	4
	6
	8
	10
	12
	14
	16
	18
	20
	22
	24
	26
	28
	30
	32
	34
	36
	38
	40
	42
	44
	46
	48

	1
	25
	27
	29
	31
	33
	35
	37
	39
	41
	43
	45
	47
	49
	1
	3
	5
	7
	9
	11
	13
	15
	17
	19
	21
	23


Second step. Splitting onto 5-point transforms (algorithm “fft5x5”).

According to Cooley-Tukey algorithm [Blahut, pp. ____]:

1. Samples of input signal are ordered into two-dimensional table 5х5 (see table 3).

Table 3. Ordering input data for algorithm “fft5x5” into two-dimensional table.

	
	0
	1
	2
	3
	4

	0
	0
	5
	10
	15
	20

	1
	1
	6
	11
	16
	21

	2
	2
	7
	12
	17
	22

	3
	3
	8
	13
	18
	23

	4
	4
	9
	14
	19
	24


2. Rows are processed by 5-point Fourier transforms (five 5-point transforms).

3. Obtained result is point-by-point multiplied by twiddle factor mask presented in table 4.
Table 4. Twiddle factor mask.

	
	0
	1
	2
	3
	4

	0
	1
	1
	1
	1
	1

	1
	1
	
[image: image2.wmf]1

W


	
[image: image3.wmf]2

W


	
[image: image4.wmf]3

W


	
[image: image5.wmf]4

W



	2
	1
	
[image: image6.wmf]2

W


	
[image: image7.wmf]4

W


	
[image: image8.wmf]6

W


	
[image: image9.wmf]8

W



	3
	1
	
[image: image10.wmf]3

W


	
[image: image11.wmf]6

W


	
[image: image12.wmf]9

W


	
[image: image13.wmf]12

W



	4
	1
	
[image: image14.wmf]4

W


	
[image: image15.wmf]8

W


	
[image: image16.wmf]12

W


	
[image: image17.wmf]16

W




Here 
[image: image18.wmf])

25

/

2

exp(

p

j

W

-

=

.

4. Columns are processed by 5-point Fourier transforms (five 5-point transforms).
5. Result is read into vector according to table 5.
Table 5. Reading output data of algorithm “fft5x5” from two-dimensional table into output vector.

	
	0
	1
	2
	3
	4

	0
	0
	1
	2
	3
	4

	1
	5
	6
	7
	8
	9

	2
	10
	11
	12
	13
	14

	3
	15
	16
	17
	18
	19

	4
	20
	21
	22
	23
	24


Third step. Calculating 5-point transform.

Rader algorithm [Blahut, pp. ____] allows to replace multiplying by 5-point Fourier transform matrix


[image: image19.wmf]ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

=

1

2

1

4

2

4

1

3

3

1

4

2

4

3

2

1

5

1

1

1

1

1

1

1

1

1

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

F

,



[image: image20.wmf])

5

/

2

exp(

p

j

W

-

=

,



(1)

by 4-point circular convolution and several additions.

Let us make rows permutation according to next law [0 1 2 4 3], then let us use next permutation law to matrix columns [0 2 1 3 4].

Matrix is transformed to the next form


[image: image21.wmf]ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

=

2

1

1

4

4

2

1

3

3

4

2

1

1

3

4

2

5

1

1

1

1

1

1

1

1

1

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

F

,



[image: image22.wmf])

5

/

2

exp(

p

j

W

-

=

.



(2)

As can be seen, main part of matrix 
[image: image23.wmf]5

F

 represents 4-point circular convolution with vector of twiddle factors 
[image: image24.wmf][

]

1

3

4

2

W

W

W

W

. This convolution can be made by means of two 4-point Fourier transforms.

Fourth step. Calculating 4-point Fourier transform (algorithm “fft2x2”).

Calculation of this transform uses algorithm of Cooley-Tukey in the same way, as was described in step 2:

1. Samples of input signal are ordered into two-dimensional table 2х2 (see table 6)

Table 6. Ordering input data for algorithm “fft2x2” into two-dimensional table.

	
	0
	1

	0
	0
	2

	1
	1
	3


2. Rows are processed by 2-point Fourier transforms (two 2-point transforms).

3. Obtained result is point-by-point multiplied by twiddle factor mask presented in table 7.
Table 7. Twiddle factor mask.

	
	0
	1

	0
	1
	1

	1
	1
	
[image: image25.wmf]1

W




Here 
[image: image26.wmf]j

j

W

-

=

-

=

)

4

/

2

exp(

p

.

4. Columns are processed by 2-point Fourier transforms (two 2-point transforms).
5. Result is read into vector according to table 8.

Table 8. Reading output data of algorithm “fft2x2” from two-dimensional table into output vector.

	
	0
	1

	0
	0
	1

	1
	2
	3


Calculating 4-point circular convolution graphically is illustrated by fig. 2.


[image: image27.wmf]-j

j

2

~

W

0

~

W

1

~

W

3

~

W

1

2

4

3

2

1

4

3


Fig. 2. Graphical presentation of fast 4-point circular convolution algorithm based on Fourier transform algorithm fft2x2.

Here


[image: image28.wmf]ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

-

-

-

-

-

=

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

1

3

4

2

3

2

1

0

1

1

1

1

1

1

1

1

1

1

1

1

4

1

~

~

~

~

W

W

W

W

j

j

j

j

W

W

W

W

,

 
[image: image29.wmf])

5

/

2

exp(

p

j

W

-

=

.




(3)

The whole graph of 5-point Fourier transform calculation is presented in fig. 3.

Computational complexity. Algorithm consists of 25 2-point transforms and 20 5-point transforms. (because one 25-transform is realised by 10 5-point transforms).

2-point transform requires two operations of complex addition (well-known butterfly structure).

As can bee seen from fig. 3, 5-point transform requires 21 complex additions and 4 complex multiplications.

Don’t forget about two steps of multiplying by twiddle factor mask that uses 2*16=32 complex multipliations alltogether.

So the whole algorithm requires:

25*2+20*21=50+420=470 complex additions.

20*4+2*16=80+32=112 complex multiplications.


[image: image30.wmf]-j

j

2

~

W

0

~

W

1

~

W

3

~

W

2

1

4

3

0

1

2

4

3

0

Fig. 3. Graphical representation of algorithm fft5.

For comparison – direct 50-point Fourier transform algorithm requires 49*50=2450 complex additions and 49*49=2401 complex multiplications.

Conclusion.
“In fact good FFT algorithms exist for any block length”.

The 50-point fast Fourier transform algorithm illustrates this Blahut’s expression very well. By proper using of several approaches for splitting large-point Fourier transforms into smaller ones the overall amount of computations can be significantly decreased. By analysing this algorithm it can be easily seen, that significant part of this algorithm uses simple butterfly structure.

It can be also remarked, that the minimal (corresponding to the smallest angle) twiddle factor used here is 
[image: image31.wmf])

25

/

2

exp(

p

j

-

. This fact together with decreasing number of calculation increases algorithm precision too.
It can be common recommendation - as the first step to split transform onto transforms of coprime lengthes in order: 1) to avoid multiplications by twiddle factors corresponding to small angles; 2) to avoid multiplications on large twiddle factor masks.

Short description of Matlab file packet.
Packet content:
“fft50.m” – realizes 50-point Fourier transform algorithm according to «fft25х2» (step 1);

“fft25.m” – realizes 25-point Fourier transform algorithm according to «fft5х5» (step 2);

“fft5.m” – realizes 5-point Fourier transform algorithm according to steps 3 и 4.

In the last file 4-point Fourier transform is realized by standard Matlab function «fft», hoping that reader can realize 4-point Cooley-Tukey algorithm it by himself.

References.

R. E. Blahut. Fast Algorithms for Digital Signal Processing. Addison-Wesley, 1985.
_1169273259.unknown

_1169273824.unknown

_1169482903.unknown

_1169536495.unknown

_1169536520.unknown

_1169538790.unknown

_1169484695.vsd

_1169485217.unknown

_1169483016.unknown

_1169274386.unknown

_1169482508.vsd

_1169274234.unknown

_1169273286.unknown

_1169273287.unknown

_1169273269.unknown

_1169273273.unknown

_1169273145.unknown

_1169273201.unknown

_1169273220.unknown

_1169273182.unknown

_1169273192.unknown

_1169273174.unknown

_1169273099.unknown

_1169273107.unknown

_1169273128.unknown

_1169192377.vsd

_1169273067.unknown

