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lock Digital Filtering 
Ing-Song Lin and Sanjii 

Abshuct-Block digital filtering has been suggested to increase 
the parallelism of computation and to reduce the computational 
complexity of digital filtering systems. In this paper the block 
processing concept is generalized by considering overlapped input 
and/or output blocks. As an overlapped block digital filter is, 
in general, a shift-varying system, the conditions for its shift- 
invariant operation have been developed. These conditions have 
been exploited to derive computationally efficient shift-invariant 
block structures. Two types of fast FIR filtering algorithms using 
the overlapped block filter structures are derived. One is based on 
the adaptation of fast short-length linear convolution algorithms 
and the other is based on DFT algorithms. These algorithms not 
only reduce the computational complexity of filtering operations 
but also offer modular and parallel structures. Finite wordlength 
effects of FIR filters implemented using the overlapped block 
filter structure are also investigated. 

I. INTRODUCTION 

LOCK DIGITAL filtering has been suggested to increase 
the parallelism of computation and to reduce the com- 

putational complexity of digital filtering systems [11-[5]. The 
basic block diagram of the well-known block digital filter is 
shown in Fig. 1 in which the input sequence is converted 
into a series of contiguous blocks of length L by means of 
a serial-to-parallel converter. Each input block is processed 
simultaneously by a L-input, L-output block digital filter 
characterized by a transfer matrix P(2) .  The output block of 
which is then converted back into a serial format by means of 
a parallel-to-serial converter. 

In general, a block digital filter is a time-varying system 
which can be seen from its equivalent multirate representation 
shown in Fig. 2. It should be noted that in this representation, 
the samples of the input block are critically down-sampled 
(i.e., the down-sampling factor is equal to the number of 
branches) before processing by the block digital filter P( x) 
whose outputs are again critically up-sampled before being 
converted into a serial form by the output interleaving struc- 
ture. 

In this paper we generalize the block processing concept by 
considering overlapped input and output blocks as indicated in 
Fig. 3 where L represents the input block size, N represents 
the output block size, and M is the down-sampling (up- 
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Fig. 1. Schematic representation of a block digital filter. 

Fig. 2. Multirate representation of a conventional block digital filter. 
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Fig. 3. Multirate representation of an overlapped block digital filter. 

sampling) factor. When L = M ,  the input blocks are not 
overlapped, and when L > 111, the input blocks are overlapped. 
Likewise, when N = M ,  the output blocks are not overlapped, 
and when N > M ,  the output blocks are overlapped. It should 
be noted that the down-sampling factor need not be the same 
as the up-sampling factor. However, in this paper we only 
consider the case when they are equal, and thus the input and 
the output sampling rates are equal. 

As we shall demonstrate later, the overlapped block filter 
structure will lead to computationally more efficient realiza- 
tions in many applications. This fact may not be immediately 
apparent. When the block size is fixed, the down-sampling fac- 
tor M determines the data rate of each branch. If M is smaller 
(as in the overlapped blocks case), the number of computations 
seems increasing instead of decreasing. But when overlapped 
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block structure is used, the correlation between signal blocks 
can be utilized more efficiently resulting in more efficient 
structures. 

11. SHIFT-~NVARIANT CONDITIONS 
FOR BLOCK DIGITAL FILTERS 

2.1 Input-Output Relation 

Because of the shift-varying property, the output of a 
overlapped block digital filter contains not only a (linear shift- 
invariant) filtered version of the input signal, but also aliasing 
components. A block digital filter can be made shift-invariant 
by ensuring the elimination of all aliasing components. 

From basic multirate theory [6] we can show that the input- 
output relation of the structure of Fig. 3 in the x-domain is 
given by 

r 1 1 

The IC = 0 term is the shift-invariant component and all others 
are aliasing components. When these aliasing components are 
canceled, this system becomes shift-invariant. 

The input-output relation of a linear shift-varying system 
can also be described in the sample-domain by a superposition 

oc 

7 = - m  

where ~ ( n )  and y(n) are, respectively, the input and the 
output sequences, and h(n,i) is the response of the system 
at time n to a unit sample sequence applied at time i .  A 
frequency-domain version of (2) is given by 

Y ( e J n i )  = / 7 r  N ( e J n l ;  eJn2)X(eJn2,)  dCl2 (3) 
-7r 

where 
03 

i=-m 
03 

n=-m 

and the bi-frequency response H(ejnl ejn2) is defined as 
. . m o o  

For an overlapped block digital filter, h(n + M ,  i + M )  = 
h(n,i)  where M is the down-sampling factor. It has been 
shown [7] that H ( e j n 1 , e j a Z )  is nonzero only if 0 2  = 
R1 - 27ru/M, n E 0,1, . . . ,111 - 1, which are parallel lines 
in the (Ol, Rz)-plane and corresponding to different aliasing 
components. Fig. 4 shows a typical bi-frequency response of 

bifrequency response 

-300 

1 

x-axis 0 0  Y -e 
Fig. 4. 
The z-axis is 621 / 2 a ,  and the y-axis is R2/2a. 

The bi-frequency response of a typical overlapped block digital filter. 

an overlapped block digital filter with an up/down-sampling 
factor of 4. The center line is the LSI component and all 
others are aliasing components. 

2.2 Shift-Znvariant Conditions 
Vaidyanathan and Mitra [8] have studied the shift-invariant 

conditions for nonoverlapped block digital filters and have 
proved that for L = M = N (nonoverlapped block process- 
ing), the over-all system is shift-invariant if and only if the 
block transfer matrix P ( z )  has the following form: 

(7) 

Note that P ( z )  is almost like a circulant matrix except 
that all elements below the main diagonal are multiplied by 
an additional 2-l term. Such a matrix has been called a 
pseudocirculant matrix [8]. The transfer function of the shift- 
invariant system is then given by 

1 .  I !  x d H 1 ( z )  x - lHz ( z )  . . . Ho(z) 

HO(4 Hl(4 . . .  HM-l(X) 
z - lHM-l (z )  Ho(%) . . . H M - z ( x )  

P(z )  = 

H ( % )  = H O ( P )  + z-lH&") + ' ' ' + %dM-l)  

(8) 

Our objective here is to extend the above result to the 
overlapped ( L  2 M and N 2 M )  case. For simplicity, we 
consider first a three-branch system ( L  = N = 3 )  with a 
dowdup-sampling factor of 2 ( M  = 2) as shown in Fig. 5. 
The block transfer matrix P ( z )  here is a 3 x 3 matrix given by: 

M 
' H M - l ( Z  ). 

1 (9) [ P2o(Z) h ( z )  P22(z) 

Poo(z) pol(") P02(z) 

P(,)  = &(.) Pll(.) P12(.) . 

We can change the input delay-chain structure of above figure 
to a critically down-sampled form as shown in Fig. 6(a). 
Likewise, we can change the output interleaving structure of 
above figure to a nonoverlapped form as shown in Fig. 6(b). 
After these modifications, an equivalent two-branch structure 
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Fig. 5. A simple overlapped block digital filter 
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Fig. 6. 
Equivalent maximally decimated system. 

(a) Equivalent input structure. (b) Equivalent output structure. (c) 

of Fig. 5 is obtained as indicated in Fig. 6(c). From this figure 
it is evident that if 

is a pseudocirculant matrix, the system of Fig. 6(c) and hence 
that of Fig. 5 becomes shift-in-variant. 

For a general overlapped block digital filter with L input 
branches, N output branches, an upldown-sampling factor of 
M ,  and a block transfer function matrix P ( z ) ,  by using a 
similar procedure, we can show that the condition for shift- 
invariance is that the M x M matrix &@) given by 

&(XI = R ( z ) f Y z ) S ( z )  (1 1) 

be a pseudocirculant matrix where R(x) is a M x N matrix 
of the following form: 

R(z)  = 

. . .  0 0 0 1 . . .  0 0 0  
. .  , . . .  

. .  . . .  . . .  . . . . . .  
. . . z - 1  0 0 0 . . .  1 0 0  
. . .  0 2-1 0 0 ' ' .  0 1 0 
. . .  0 0 2-1 0 ' ' .  0 0 1 

and S ( z )  is a L x M matrix of the form: 

S ( z )  = 

0 1 0 0 . . '  
0 1 0 ' . .  0 
0 0 1 . . .  0 

0 0 0 . ' '  1 
2-1 0 0 ' . .  0 

0 2-1 0 . . .  0 

. .  . 
. .  . . .  

. .  . .  

We shall call a block transfer matrix P ( z )  satisfying the above 
condition as an extended pseudocirculant matrix. 

2.3 Implementation of LSI Systems Using 
Overlapped Block Structure 

For a given upldown-sampling factor M ,  unlike the 
nonoverlapped case, there are many different choices of 
the input block length L ,  the output block length N ,  and 
the block transfer matrix P ( z ) ,  all leading to the same 
pseudocirculant matrix Q ( z )  and thus the same transfer 
function H (  z )  . For instance, to implement in overlapped 
block structure form a LSI system with a transfer function 
H ( z )  = H0(z3) + 2- lHl ( z3 )  + z - ~ H ~ ( x ~ ) ,  we can choose 
M = 3.L = 3 , N  = 5, and 

P ( z )  = 

As indicated below, the matrix Q ( z ) :  

0 0 1 0 0  

0 2-1 0 0 1 

Wo(2) H1(z) H2(z )  

z d H 1 ( z )  z - l H z ( z )  Ho(z)  
z - % ( z )  Ho(z)  H1(z )  

2-1 0 0 1 

is a pseudocirculant matrix. 
An alternate choice, for example, is L = 5. N = 3, and 

In this case 

1 0 0  
0 1 0  

Rob) Hl(2) H2(2) 

(12) is again seen to be the same pseudocirculant matrix as in (15). 
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which is again the same pseudocirculant matrix as in (15). 
Now consider the general case. Assume that the LSI transfer 

function H ( z )  to be realized is of the form of (8). We can 
choose an input block size of L = M ,  and an output block 
size of N = 2M - 1, and a block transfer function matrix 

L o  0 

Alternately, we can choose a structure with N = M ,  L = 
2M - 1, and a block transfer function matrix (see (21) at the 
bottom of the page). 

It can be easily shown that P l ( z )  and Pz(z)  are both 
extended pseudocirculant matrices for the desired transfer 
function of (8). 

We shall call PI( . )  the Type A extended pseudocirculant 
matrix, and P2 ( 2 )  the Type S extended pseudocirculant matrix. 
For a Type A structure, the size of the input blocks are 
equal to the down-sampling factor, and the size of the output 
blocks are larger than the up-sampling factor. As a result, 
in this case, the input blocks are not overlapped, whereas, 
the output blocks are overlapped. These properties are very 
similar to the conventional overlap-add algorithms for linear 
convolution. For a Type S structure, it is exactly opposite, 
i.e., the input blocks are overlapped, while, the output blocks 
are not overlapped. These properties are very similar to the 
standard overlap-save algorithms for linear convolution. 

111. FAST FIR FILTERING ALGORITHMS 

FIR filters are often used in digital signal processing ap- 
plications as they can be designed with exact linear phase 

and do not have any stability problems. However, an FIR 
filter structure is computationally more expensive than an 
IIR equivalent meeting the same filter specifications. Hence, 
it is important to find computationally efficient FIR filtering 
algorithms. In this section, we derive a set of such algorithms 
using the overlapped block structure. Some of these algorithms 
are similar to those proposed by Vetterli [9], and Mou and 
Duhamel [lo]. However, our approach is more general pro- 
viding better insight into the problem and leading to a new set 
of fast filtering algorithms. 

3.1 Structures Based on Fast Short-Length 
Linear Convolution Algorithms 

We now derive a set of fast block filtering algorithms that 
can be considered as direct extensions of fast short-length lin- 
ear convolution algorithms. The computational complexities of 
these algorithms are analyzed, and some computer experiments 
are carried out to verify the analysis. Finite word-length effects 
are also studied. 

3.1.1 Algorithms: It is well known that the linear convolu- 
tion is equivalent to polynomial multiplication [ 1 I]  and many 
fast short-length linear convolution algorithms are derived 
from this view point [11], [12]. First we establish the link 
between the polynomial multiplication problem and the Type 
A extended pseudocirculant matrix. Consider the product s(z) 
of two first-order polynomials f ( z )  = f l z  + f 0  and g ( 2 )  = 
,912 + 90 :  

We can rewrite the relation between the coefficients of various 
polynomials involved as 

f l  0 [‘:I = [a ;A] [:I. 

[t h] = [-a 8 -11 [i f o p  jO] 

(23) 

Note that the 3 x 2 matrix in the above equation has exactly 
the same form as the Type A extended pseudocirculant matrix 
with M = 2. 

There are a number of fast algorithms which can be used to 
implement (23) efficiently [12], [13]. For example, using the 
Winograd algorithm [12] we arrive at 

f l  0 0 

(24) 
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4 1 + ~ - 1  ~ H ~ ( ~ ) + H , ( Z )  

Fig. 7. 
structure. 

Fast FIR filtering algorithm based on Type A overlapped block 

which requires one less multiplication at the expense two more 
additions than that are needed in a direct implementation of 
(23 1. 

Extending (24) to the polynomial case we obtain 

1 0  

0 

0 
. E’) Ho(z )  + H l ( z )  

(25) 

The matrix on the left-hand side of (25) is a Type A extended 
pseudocirculant matrix with L = M = 2, and N = 3. In 
implementing a transfer function H ( z )  = H o ( ~ ~ ) + z - ~ ~ ~ ( z ~ )  
we can use the decomposition of (25) and realize H ( z )  using 
an overlapped block structure with L = M = 2,  N = 3 ,  as 
shown in Fig. 7. Each polynomial H,(z ) .  i = 0,1,  in (25) 
corresponds to a filtering operation with an FIR filter of about 
half the length of the original filter H ( z )  being its polyphase 
component. Through this process the number of subfiltering 
operations has been reduced to 3 from 4, thus decreasing the 
computational complexity. 

It can be seen that the Type S extended pseudocirculant 
matrix is precisely the transpose of the Type A extended 
pseudocirculant matrix. Hence, a simple transpose operation 
of a Type A overlapped block structure realization yields 
an equivalent realization using a Type S overlapped block 
structure. Fig. 8 indicates the transpose of Fig. 7. 

In general, the linear convolution of two length-M se- 
quences x(.) and h(i 

Y2M-2 

YZM-3 

Y M - 1  
Y M - 2  

Yo 

Most fast short-length convolution algorithms can be thought 
of ways to decompose the (2M - I) x M matrix in the above 
equation. To be more specific, this matrix can be decomposed 

Fig. 8. 
structure. 

Fast FIR filtering algorithm based on Type S overlapped block 

into the form UGV. Matrices U and V consist of integers 
only and can be implemented without multiplications, and 
matrix G is a diagonal matrix whose diagonal elements depend 
on ho, hl ,  . . . , hM-1 only. We can simply apply the same 
procedure to the above example to adapt fast short-length 
linear convolution algorithms into fast FIR filtering algorithms. 

It should be noted that the structure of Fig. 7 is very 
similar to the structure of Fig. 9 proposed by Vetterli [9]. 
When the three filters before the down-samplers and the 
three filters after the up-samplers in Vetterli’s structure are 
implemented in polyphase forms, we arrive at the same 
algorithm as in Fig. 7. There is not much difference in 
computational complexity of both his and our algorithms, but 
the relationship between the multirate implementation and fast 
linear convolution algorithms are much clearer by using the 
concept of overlapped block structure. Also, the transpose 
structures proposed in this paper (using the Type S extended 
pseudocirculant matrices ) are not covered in Vetterli’s work. 

Mou and Duhamel [lo] also proposed similar fast FIR 
filtering algorithms using the pseudocirculant property. The 
computational complexity of their structure is exactly the same 
as our algorithm but the positions of the delay elements are 
nicely placed in our algorithms and thus our structure is more 
regular than theirs. 

3.2 Computational Complexity 

First consider the computational complexity of the structure 
of Fig. 7. Because the subfilters H i ( z )  operate at half the speed 
of the original filter H ( z )  and are of half the length of H ( x ) ,  
each subfilter needs a quarter of the number of multplications 
of the original filter per output sample. The total number of 
multiplications is therefore only about 3/4 of the direct form 
implementation of that of H ( z ) .  To be precise, assume that 
H ( z )  is of length K.  Each subfilter is then of length K/2  
and requires K/2 multiplications and ( K  - 2)/2 additions. To 
compute 2 output samples we also need 1 pre-addition, 2 post- 
additions, and 1 addition for the output interleaving structure. 
The total number of multiplications per output sample is 
therefore 

1 K 3K 
2 2  4 
- ( 3 ) -  = -. 
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= 

Likewise, the total number of additions per output sample is TABLE I 
COMPARISON OF COMPUTER TIMES: M = 2 CASE 

- 2 0 0 0 0  
-1 2 -2 -1 2 
-2 1 3  0 - 1  

1 -1 -1 1 -2 
- 0 0 0 0 1  

l(1+2+l+(3)(;-1)}=7. 3 K + 2  
2 

. D  

Compared to K multiplications and K - 1 additions of the 
direct form implementation, this algorithm saves about 25% 
of total computations. 

In the general case, the optimum algorithm needs 2 M  - 1 
multiplications to calculate the linear convolution of two 
length-M sequences. By using this technique we need 2M - 1 
subfilter operations and each filter is l /Mth the length of the 
original filter and operates at l /M-th speed. We can therefore 
reduce the number of computations per output sample to about 
(2M - 1 ) / M 2  of that of the direct form implementation at the 
cost of additional pre-additions and post-additions. It seems 
that the computational complexity can be reduced by choosing 
a large M ,  but the number of additions increases dramatically 
when M increases. This fact prevents us to choose a large M ,  
and sometimes sub-optimal algorithms are chosen to reduce 
the number of additions at the cost of more subfilters. Also 
because all subfilters in the overlapped block structure can be 
processed in parallel, we can use different processor for each 
subfilter and thus further reduce the total computation time. 
The price paid for the reduction of computational complexity 
is the increased system delay time. The time delay is roughly 
equal to the block size and larger block means longer delay. 

The total number of multiplications and additions only 
provide a rough estimate of the real computation time because 
flow control, indexing, and data movement also use computer 
time. Also different computer architectures may have very 
different behaviors for the same algorithm. To ensure that 
these algorithms work in a practical situation we have written 
a C program to test some of these on a Sparc I1 workstation 
and compared their computation time with that of the direct 
form implementation of the parent transfer function. The 
simulation results are summarized in Tables I and 11. They 
list the total computer time needed to calculate 50 000 output 
samples for filters of different lengths. Table I list the result 
for a Type A overlapped block structure with M = 2 with 
all subfilters realized in direct form. Theoretically the ratio 
between the computation times of the fast algorithm and the 
direct implementation should approach 75% when the filter 
length increases and the experimental results verify this fact. 
Table I1 lists the computation time of a Type A overlapped 
block structure with M = 3 .  The block transfer function matrix 
P( x) has been decomposed using the following equation: 

1 -1 1 
1 2 4  I 0 0 1  ;:I 

filter length [ 30 I 60 I 90 I 120 I 240 I 360 I 480 
overiaDDed block I 0.93 I 1.64 I 2.42 I 3.23 I 6.21 I 9.29 I 12.35 

11 direct form I 1.03 I 2.02 I 3.04 I 4.08 I 8.14 I 12.39 I 16.69 11 
[r ratio I 0.877 10.812 I 0.796 10.792 10.763 I 0.740 I 0.750 

where D is a diagonal matrix given by 

We need 5 subfilters and 20 additions for each block. Though 
the two integer matrices can be computed without any multi- 
plications, we can also use some additional multiplications 
to reduce the number of additions. When the filter length 
increases, we can see that the ratio of the two computer times 
approaches the theoretical value of 519. 

3.3 Finite Wordlength Effects 

Because most commercial DSP chips are now optimized 
for multiply-add-accumulate type operation, they are designed 
to implement FIR filters in direct form very efficiently. Thus, 
we only consider here the direct form implementation of all 
subfilters to study the effect of finite wordlengths. 

Since there are no coefficients to be quantized in the pre- 
filtering and post-filtering parts, coefficient quantization effect 
is completely determined by the subfilters. After all subfilter 
coefficients are quantized, we compute the quantized block 
transfer function matrix and find the equivalent nonoverlapped 
block transfer function matrix. The shift-invariant part of this 
system and all aliasing components are computed according 
to (1). The actual output signal is now given by 

Y(n) = Yq(.) + 4.) = yZLq(n) + 4 n )  + 4 n )  (29) 

where yq (n) is the quantized LSI component which is the sum 
of the ideal unquantized output yTL4(n) and the error ~ ( n )  in 
the LSI component due to the coefficient quantization, and 
a(.) comes from the aliasing components. 

Consider a Type A overlapped block structure with an 
upldown-sampling factor of 2 with (25) used to decompose the 
block transfer function matrix. After coefficient quantization, 
we have a quantized block transfer function matrix. 

H1 + E l  0 [-a -11 [ 0 ] 0 0 Ho + Eo 
H O + H I  +E2 

0 
. [i y1 

= H o $ E z - E l  H 1 + E z - E o  1 (30) [ H1:E1  Ho + Eo 

where Eo ( z ) ,  El ( 2 )  , and E2 (2) are the quantization errors of 
the three subfilters respectively. The equivalent nonoverlapped 
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ratio I 0.748 0.654 I 0.612 

TABLE I1 
COMPARISON OF COMPUTER TIMES: 211 = 3 CASE 

0.596 I 0.575 1 0.558 I 0.551 

filter length I 30 I 60 I 90 1 120 I 240 I 360 I 480 
overlamed block I 0.77 1 1.32 I 1.86 I 2.43 I 4.68 I 6.92 I 9.19 

block transfer function matrix is then 

The shift-invariant component is shown in (32) at the bottom 
of the page and the aliasing component is shown in (33) also 
at the bottom of the page. 

There are two obvious ways to quantize this system. We can 
either choose E2 = Eo + E1 to eliminate the aliasing com- 
ponents, or we can choose E,(z)  to minimize the difference 
between the responses of the quantized and the unquantized 
subfilters. In the first case the LSI component is 

z -1{Ho(z2 )  + EO(2) )  + z -2{H1(z2 )  + E1(z2 ) }  (34) 

which is same as that obtained by a direct quantization of the 
original filter. 

To understand the effect of the second scheme, consider 
the simplest case for which all H,(z )  = h, are scalars and 
quantization step size is A. Assume ho = 2.3A, hl = 7.4A. 
and h2 = 2A. ho and hl, are then quantized, respectively to, 
2A and 7A. Both Eo and El are in the range (-Ala.  Ala) .  
When -A12 5 Eo + El 2 A/2, both cases generate the same 
E2. On the other hand, if Eo + E1 > A/2. the first scheme 
chooses E2 = Eo + El - A instead of Eo +El. The error in 
the LSI component is then Eo - A12 + z- '(El - Ala) .  The 
sum of the square error is therefore 

2 

(Eo - + ) 2 +  (El  - $) 

0.07' 1 
0 0.1 0.2 0.3 

normalized frequency normalized frequency 

Fig. 10. Frequency responses of the LSI components of the quantized 
systems: Scheme I shown with dotted line and Scheme 2 shown with solid 
line. 

Since Eo + El > A/2, the error is less than E: + E;. This 
means that this scheme has lower error in the LSI component 
at the cost of additional aliasing components. 

To experimentally determine the performances of the two 
quantization schemes, we perform a computer simulation using 
an equiripple length-40 linear phase FIR filter designed with 
the following specifications: wp = 0.47r,w, = 0.57r,Sp = 
Ss = 0.001. Fig. 10 shows the frequency responses of the 
LSI components of the two quantized systems. It can be seen 
that the second quantization scheme has better LSI response 
which is consistent with our previous analysis. Fig. 11 shows 
the frequency responses of the aliasing component. 

To verify our analysis, we used the technique proposed by 
Reng and Schssler [13] to measure the LSI and the aliasing 
components, and the measured results are almost identical to 
that obtained using the theoretical analysis given above. 

IV. DFT BASED FAST FIR FILTERING ALGORITHMS 

Use of efficient FFT algorithms to implement FIR filter- 
ing has been known for quite some time. The conventional 
overlap-add and the overlap-save algorithms, when imple- 
mented using FFT methods, greatly reduce the computational 
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dWnQ component 

0.02 - 

0.01 5 - 
2 
f 0.01 - 

0.005 - 

0 0.2 0.4 0.6 0.8 I 
normallred frequency 

Fig. 11. Frequency response3 of the aliasing component 

complexity of FIR filtering. The problem with these algorithms 
is that the block size must be larger than the filter length, and 
thus the system delay time increases. Vetterli [9] proposed 
an algorithm to solve this problem. Based on the overlapped 
block structure, we derive similar algorithms with improved 
performance. 

4.1 Basic Algorithms 

We first establish the relationship between the two special 
types of extended pseudocirculant matrices and the circulant 
matrix. For a down-sampling factor of M ,  the Type A matrix 
consists of the last M columns of a (2M - 1) x (2M - 1) 
matrix C M ,  and the Type S matrix consists of the first M 
rows of C M ,  where 

That is, we can represent these two special types of matrices 
using the following two equations: 

(37) 

Fig. 12 DFT based algorithm using the Type A overlapped block structure. 

where Ohf-l ,~f  is a null matrix of order ( M  - 1) x M ,  and 
I M  is a M x M identity matrix. The matrix CM is a circulant 
matrix and therefore can be diagonalized by the DFT matrix. 
That is 

0 0 . . .  
G1 0 . . .  

where A is a (2M - 1)-point IDFT matrix, I? is a (2M - 1)- 
point DFT matrix and 

r Go 1 r H O  1 

Fig. 12 shows an overlapped block filter structure with 
M = 3 and decomposed using (37) and (39). The transfer 
function of this system is 

H ( z )  = H ~ ( z ~ )  + z - ~ H o ( x ~ )  + z - ~ H o ( z ~ ) .  (41) 

This algorithm is very similar to the conventional overlap-add 
method except in this case the size of the DFT need not be 
larger than the filter length. We can also implement the same 
transfer function using (38) and (39) as indicated in Fig. 13. 
This structure looks exactly the same as the conventional 
overlap-save method when all subfilters are of length 1. 

In general, the DFT based structure only needs 2M - 1 
subfilters which are of length 1/Mth of the original filter and 
operate at l /Mth speed of the direct form implementation 
of the parent filter where M is the down-sampling factor. 
Therefore we can reduce the total number of computations 
to approximately (2M - l) /M2 of the direct implementation 
at the cost of additional (2M - 1)-point IDFT and DFT, and 
M additions at the output stage. This structure can greatly 
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-0 0 0 0 -  
0 0 0 0  
0 0 0 0  
0 0 0 0  
1 0 0 0 '  
0 1 0 0  
0 0 1 0  

-0 0 0 1- 

Fig. 13. DFT based algorithm using the Type S overlapped block structure. 

P ( 2 )  = 

reduce the computational load by making use of fast DFT and 
IDFT schemes. 

- H 4  0 
H 3  H 4  

122 H 3  

H I  H z  
H o  H ,  
0 H o  
0 0  

- 0  0 

4.2 FFT Based Algorithms 

When the block size is an integer power of 2, we can use 
the radix-2 FFT algorithm to implement the DFT blocks very 
efficiently. The problem is that for a down-sampling factor 
of M ,  the Type A block structure has a (2M - 1) x M size 
block transfer function matrix and therefore the size of the 
blocks is always odd. To use FFT algorithm to perform the 
decomposition, we need to modify the Type A matrix slightly. 
The simplest approach would be to add another zero element. 
To illustrate this approach, consider an FIR filter with a transfer 
function of the form 

We can implement the above transfer function by using an 
overlapped block structure with an up/down-sampling factor 
of 4, input block size of 4, output block size of 8, and the 
following block transfer function matrix P( z ) :  

(43) 

It can be easily verified that P ( z )  is still an extended pseu- 
docirculant matrix and the overlapped block system is shift- 
invariant with a transfer function given by (42). It can be 
further transformed by the following equation: 

P ( z )  = 

Ho HI H2 H3 0 0 0 0 
0 Ho H i  H2 H3 0 0 0 
0 0 Ho H i  H2 H3 0 0 
0 0 0 Ho Hi H2 H3 0 
0 0 0 0 Ho HI H2 H3 

H3 0 0 0 0 Ho Hi H2 
H2 H3 0 0 0 0 Ho Hi 
H i  Hz H3 0 0 0 0 Ho 

(44) 

The first matrix on the right-hand side of the above equation 
is a circulant matrix and can be diagonalized by the 8-point 
DFT matrix which can be implemented by using a radix-2 
FFT algorithm. 

Note that the proposed modification leads to a structure 
requiring 8 subfilters instead of 7 (2M instead of 2M - 1 
in the general case). What we gain here is the use of more 
efficient DFT and IDFT blocks. 

For a length-K FIR filter, the direct implementation needs 
K multiplications and K1 additions per output sample. If 
we use an FFT-based overlapped block structure with a 
down-sampling factor M ,  we have 2 M  branches where each 
branch is an FIR filter of length KIM operating at M times 
slower rate. We also need a 2M-point FFT and a 2M-point 
IFFT generating M output samples. The total number of 
multiplications per output sample is therefore 

and the total number of additions is 

The number of computations can be reduced by using a larger 
M but at the cost of a longer delay. 

Because the optimum algorithms to compute the linear 
convolution of two length-M sequences need (2M - 1) 
multiplications, in general, the fast linear convolution based 
algorithms need (2M - 1) subfilters. It seems that the FFT- 
based algorithms need one more subfilter. But if we consider 
more carefully, it is possible to improve further the FFT- 
based algorithms. Consider modifying the above algorithm by 
changing block transfer function matrix to 

The equivalent nonoverlapped block transfer matrix Q( 2 )  is 
as follows: (See two matrices at the bottom of the next page.) 

It is clear that Q ( z )  is a pseudocirculant matrix correspond- 
ing to a shift-invariant system with a transfer function given 
by 

~ ( 2 )  = HO(z4) + 2-lH1(z4) + 2-2H2(24) + z-3H3(24) 

+ z-4B4(z4) (45) 

and thus P ( z )  is an extended pseudocirculant matrix. 
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, H o  H I  H 2  H 3  H 4  0 0 0 - 

0 0 H o  H1 H2 H 3  H 4  0 
0 0 0 H o  H, H2 H 3  H 4  

H 4  0 0 0 H O  HI H2 H3 

H2 H3 H4 0 0 0 H o  H I  

0 Ho HI H 2  H 3  H 4  0 0 

H 3  H 4  0 0 0 HO H i  H2 

.HI H2 H3 H4 0 0 0 H o -  

LIN AND MITRA: OVERLAPPED BLOCK DIGITAL FILTERING 

We can also represent p(z )  by the following equation: 

-0 0 0 0 -  
0 0 0 0  
0 0 0 0  
0 0 0 0  
1 0 0 0  
0 1 0 0  
0 0 1 0  

-0 0 0 1, 

P ( z )  = 

- H o  HI H2 H 3  H 4  0 0 0 - 
0 H o  H, H 2  H 3  H 4  0 0 
0 0 H o  HI H 2  H 3  H 4  0 
0 0 0 H o  H1 H2 H3 a, 

H 3  H 4  0 0 0 H o  Hl H2 
H 4  0 0 0 Ho Hi  H2 H3 

H2 H 3  H 4  0 0 0 HO Hi  
.HI Hz H3 H4 0 0 0 H o -  

If we can find a set of polynomials H i ?  i = 0, 1, 2, 3, 4 such 
that 

(47) 

and Hi(.) = &i(z),i = 1, 2, 3, then &(z)  is equal to H ( x ) .  

Ho(z)  = & ( z )  + x- lH&) 

For instance, if 

H ( x )  = 1 + 22-1 + 3z-2 + 4z-3 + 52Y4 

+ 6z-5  + 7z-6 + 8 Y 7  

+ 2-3(4 + 82-4) 
= (1 + 5 Y 4 )  + zm1(2 + 6z-l) + Y 2 ( 3  + 7 f 4 )  

=HO(z4) + z - l H 1 ( z 4 )  + zc2H2(x4)  + d H 3 ( x 4 )  

it is easy to show that we can choose H o ( x )  = 1 + x 1 ( 5  - a )  
and &4(z) = a. Because there are infinite number of choices 
of H0(z )  and k 4 ( z ) ,  it is possible to choose certain pairs 
of k o ( z )  and k 4 ( z ) .  which can reduce the computational 
complexity. 

One way to do this is to choose k ~ ( z )  and &4(z) in such 
a way that G,(z) = 0 for some i. A procedure to determine 
Bo(z) and B ~ ( Z )  is as follows: Assume that h,,k is the kth 
element of the zth subfilter and H ( z )  = E:!;' h,z-'. First let 
~ O , O  = h o , ~ .  If we want G,(z)  = 0, we know from (46) that 

+ ~ ; ~ h ~ , ~  + ~ ; ~ ~ h ~ , ~  + ~ ; ~ ~ h ~ , ~  + ~ ; ~ ~ h ~ , ~  = 0 

where WS = epJ2T /8 .  From above equation we find h4,o. 
and then k l , ~  can be calculated from (47). By repeating this 
process, we can find k o ( z )  and &4(z) .  

A problem associated with this approach is that the filter 
implemented has a transfer function H ( z )  + h4,K/4-1z-K, 
where 

K-1 

As h4,K/4-l is not equal to zero in general, we must cancel 
this term by adding one multiplication and one addition per 
output sample to keep the transfer function unchanged. When 
H(1) = 0 (as is the case when H ( z )  is a highpass filter), 
we can make Go(z) = 0. In this case h4,K/4p1 = 0 and no 
cancellation is needed. When H (  -1) = 0 (as in the case when 
H ( z )  is a lowpass filter), we can choose H 0 ( z )  and H4(z)  in 
such a way that G ~ ( z )  = 0 and no additional computation is 
added. Therefore we can reduce the number of subfilters by 
one with little cost in general, and none in some cases. 

When calculating the total number of multiplications and 
addition, we assume that complex arithmetic operations are 
used. If input signals and filter coefficients are all real, we 
need to compute half of the subfiltering operations because of 
the symmetrical property. Therefore we can reduce further the 
computational complexity. 
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V. CONCLUDING REMARKS [ 121 S. Winograd, Arithmetic Complexities of Cmputations, CBMS-NSF 
Regional Conf. Series in Applied Mathematics, SIAM Pub. 33, 1980. 

[I31 R. Reng and H. W. Schssler, “Measurement of aliasing distortion and 
quantization noise in multirate systems,” in Proc. ZEEE Znt. Symp. 

The conventional block digital filtering approach has been 
generalized to the overlamed block case. We have derived the U I I  

Circuits Sysl., San Diego, CA, 1988, pp. 1281-1284. 

Electrical Computer Eng., Univ. California, Santa Barbara, Nov. 1993. 

condition for shift-invariance ‘peration Of a linear Overlapped 
[ 141 Lin, “Overlapped block digital filtering,” Ph.D. dissertation, Dept. 

block digital filter and the implementation of a LSI transfer 
function using an overlapped block structure. A set of fast 
FIR algorithms based on the overlapped block structure have 
been derived. These algorithms are highly parallel and thus can Ing-Song Lin received the B S E E and M S E.E 

degrees from National Taiwan University in 1983 
and 1985 respectively, and the Ph D degree in elec- 
trical and computer engineering from the University 
of Califomia, Santa Barbara in 1994 

Since 1994, he has been with Chung-Shan In- 
stitute of Science and Technology, Taiwan, where 
he is presently an associate scientist His rerearch 
intereFts include digital signal and image processing 

be implemented using multiple processors to reduce the total 
computation time. Finite wordlength effects of some of these 

of IIR transfer functions using the overlapped block structure is 
feasible but their higher computational complexity compared 

fast filtering algorithms have been discussed. Implementation 

to their nonblock implementation make them less attractive 
for practical applications [ 141. 
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