DTT transform relationship derivation

Introduction.

In the paper "The Algebraic Approach to the Discrete Cosine and Sine Transforms and their Fast Algorithms" [1] an example of DTT relationship is described (see Example 8.4. DCT-1 and DST-2 on page 21). Though, some of details are not clear enough. Here I'm presenting original text (blue colour) of this example with my comments added (black colour).

Example 8.4. DCT-1 and DST-2.

We will translate a DCT1 1_{N+1} into a $\operatorname{DST} 2_{N}$. Using again table 6.1 we get as associated algebras and bases

$$
\begin{aligned}
& \operatorname{DCT1}_{N+1} \leftrightarrow C[x] /\left(x^{2}-1\right) U_{N-1}, \quad b=\left(T_{0}, \ldots, T_{N}\right) \\
& \operatorname{DST2}_{N} \leftrightarrow C[x] /(x+1) U_{N-1}, \quad b=\left(W_{0}, \ldots, W_{N-1}\right)
\end{aligned}
$$

Note that we have to choose $\mathrm{N}+1$ and N respectively, to obtain comparable
algebras. We have $\operatorname{DCT}_{N+1}=\left[T_{l}\left(\alpha_{k}\right)\right]_{k, l}$ and $\operatorname{DST2}_{N}=D \cdot\left[W_{l}\left(\alpha_{k}\right)\right]_{k, l}$, where $\alpha_{k}=\cos \left(\frac{\mathrm{k} \pi}{N}\right), \quad k=0 \ldots N$ are the zeros of $\left(x^{2}-1\right) U_{N-1}$ (2nd row in Table 4.2). For the DST_{N}, $\alpha_{0}=1$ is skipped.

This representation means that DCT1 matrix is defined in terms of Tschebyshev polynomials $\mathrm{T}_{n}(x)$, computed at roots of ring characteristic polynomial $\mathrm{P}_{1}(x)=\left(x^{2}-1\right) U_{N-1}$, and DST2 matrix is defined in terms of Tschebyshev polynomials $\mathrm{W}_{n}(x)$, computed at roots of ring characteristic polynomial $\mathrm{P}_{2}(x)=(x+1) U_{N-1}$.
According to the Table 4.2 roots are

$$
\begin{array}{ll}
\mathrm{P}_{1}\left(\alpha_{k}\right)=0, & \alpha_{k}=\cos \left(\frac{(\mathrm{k}+1) \pi}{N}\right), \\
\mathrm{P}_{2}\left(\alpha_{k}\right)=0, & \alpha_{k}=\cos \left(\frac{(\mathrm{k}+1) \pi}{N}\right),
\end{array}
$$

Hence, matrix DCT1

$$
\operatorname{DCT}_{N+1}=\left[T_{l}\left(\alpha_{k}\right)\right]_{k, l}=\left[\begin{array}{cccc}
T_{0}\left(\alpha_{-1}\right) & T_{1}\left(\alpha_{-1}\right) & \cdots & T_{N}\left(\alpha_{-1}\right) \\
T_{0}\left(\alpha_{0}\right) & T_{1}\left(\alpha_{0}\right) & & \\
\vdots & & \ddots & \\
T_{0}\left(\alpha_{N-1}\right) & & & T_{N}\left(\alpha_{N-1}\right)
\end{array}\right]
$$

And matrix DST2

$$
\operatorname{DST}_{N}=D \cdot\left[W_{l}\left(\alpha_{k}\right)\right]_{k, l}=D \cdot\left[\begin{array}{cccc}
W_{0}\left(\alpha_{0}\right) & W_{1}\left(\alpha_{0}\right) & \cdots & W_{N-1}\left(\alpha_{0}\right) \\
W_{0}\left(\alpha_{1}\right) & W_{1}\left(\alpha_{1}\right) & & \\
\vdots & & \ddots & \\
W_{0}\left(\alpha_{N-1}\right) & & & W_{N-1}\left(\alpha_{N-1}\right)
\end{array}\right]
$$

Here for DCT1, k index runs from -1 to N , that is different from original text.
The scaling matrix is $\mathrm{D}=\operatorname{diag}_{k=0}^{N-1}\left(\sin \left(\frac{(\mathrm{k}+1) \pi}{2 N}\right)\right)$ (Table 6.2).
According to Table 6.1, scaling multiplier is $\sin \left(\frac{1}{2} \theta\right)$. Value θ could be found from table 5.1 (see red lasso-line).

We compute the base change matrix B for

$$
C[x] /\left(x^{2}-1\right) U_{N-1} \cong C[x] /(x-1) \oplus C[x] /(x+1) U_{N-1}
$$

The bases are b, (1), b', respectively. Using $\mathrm{T}_{l}=\frac{1}{2}\left(\mathrm{~W}_{l}-\mathrm{W}_{l-1}\right)$ (4th row, 3rd column in Table 4.3) and $\mathrm{T}_{N}=\frac{1}{2}\left(\mathrm{~W}_{N}-\mathrm{W}_{N-1}\right) \equiv-\mathrm{W}_{N-1} \bmod (x+1) U_{N-1}$ (because, again from Table 4.3, $(x+1) U_{N-1}=$ $\left.\frac{1}{2}\left(\mathrm{~W}_{N}-\mathrm{W}_{N-1}\right)\right)$ we get

$$
\mathrm{B}=\frac{1}{2} \cdot\left[\begin{array}{cccccc}
2 & 2 & 2 & \cdot & \cdot & 2 \\
2 & -1 & & & & \\
& 1 & -1 & & & \\
& & \cdot & \cdot & & \\
& & & \cdot & -1 & \\
& & & & 1 & -2
\end{array}\right]
$$

The 1 's in the first row are due to $\mathrm{T}_{l}(1)=1$ (Lemma 4.2). We get $\left[T_{l}\left(\alpha_{k}\right)\right]_{k, l}=\left(I_{1} \oplus\left[W_{l}\left(\alpha_{k}\right)\right]_{k, l}\right)$. B and hence

$$
\left(I_{1} \oplus \mathrm{D}\right) \cdot \mathrm{DCT}_{N+1}=\left(I_{1} \oplus \mathrm{DST}_{N}\right) \cdot B
$$

Relation between $T_{l}(x)$ and $W_{l}(x)$ polynomials according to the table 4.3 is

$$
\left[\begin{array}{c}
T_{0}(x) \\
T_{1}(x) \\
\\
T_{N-1}(x) \\
T_{N}(x)
\end{array}\right]^{T}=\left[\begin{array}{c}
W_{-1}(x) \\
W_{0}(x) \\
W_{1}(x) \\
\\
W_{N-1}(x) \\
W_{N}(x)
\end{array}\right]^{T} \cdot \frac{1}{2} \cdot\left[\begin{array}{cccccc}
-1 & & & & & \\
1 & -1 & & & & \\
& 1 & -1 & & & \\
& & \cdot & \cdot & & \\
& & & \cdot & \cdot & \\
& & & & \cdot & -1
\end{array}\right]
$$

By green colour we marked basis elements out of boundaries of transform definition. Next step is finding symmetry relation for basis elements outside of boundaries.

According to the symmetry (table 4.2), $W_{-1}(x)=-W_{0}(x)$ and $W_{N}(x)=-W_{N-1}(x) \bmod (x+$ 1) U_{N-1}. So, this relation can be modified to

$$
\left[\begin{array}{c}
T_{0}(x) \\
T_{1}(x) \\
\\
T_{N-1}(x) \\
T_{N}(x)
\end{array}\right]^{T}=\left[\begin{array}{c}
W_{0}(x) \\
W_{1}(x) \\
\\
W_{N-1}(x)
\end{array}\right]^{T} \cdot \frac{1}{2} \cdot\left[\begin{array}{cccccc}
2 & -1 & & & & \\
& 1 & -1 & & & \\
& & \cdot & \cdot & & \\
& & & \cdot & \cdot & \\
& & & & \cdot & -2
\end{array}\right]
$$

Substituting $\alpha_{0} \ldots \alpha_{N-1}$ for x, we get relation between matrices generating DCT1 and DST2 transforms

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
T_{0}\left(\alpha_{0}\right) & T_{1}\left(\alpha_{0}\right) & & \\
\vdots & & \ddots & \\
T_{0}\left(\alpha_{N-1}\right) & & & T_{N}\left(\alpha_{N-1}\right)
\end{array}\right]} \\
& =\left[\begin{array}{cccc}
W_{0}\left(\alpha_{0}\right) & W_{1}\left(\alpha_{0}\right) & \cdots & W_{N-1}\left(\alpha_{0}\right) \\
W_{0}\left(\alpha_{1}\right) & W_{1}\left(\alpha_{1}\right) & & \\
\vdots & & \ddots & \\
W_{0}\left(\alpha_{N-1}\right) & & & W_{N-1}\left(\alpha_{N-1}\right)
\end{array}\right] \cdot \frac{1}{2} \cdot\left[\begin{array}{ccccc}
2 & -1 & & & \\
& 1 & -1 & & \\
\\
& & \cdot & \cdot & \\
\\
& & \cdot & \cdot & \\
& & & & \cdot
\end{array}\right]
\end{aligned}
$$

Taking into account that $T_{l}\left(\alpha_{-1}\right)=T_{l}(1)=1$, we can add first row to the T-matrix in a next way
$\left[\begin{array}{cccc}T_{0}\left(\alpha_{-1}\right) & T_{1}\left(\alpha_{-1}\right) & \cdots & T_{N}\left(\alpha_{-1}\right) \\ T_{0}\left(\alpha_{0}\right) & T_{1}\left(\alpha_{0}\right) & & \\ \vdots & & \ddots & \\ T_{0}\left(\alpha_{N-1}\right) & & & T_{N}\left(\alpha_{N-1}\right)\end{array}\right]$

$$
=\left[\begin{array}{ccccc}
1 & {\left[\begin{array}{cccc}
W_{0}\left(\alpha_{0}\right) & W_{1}\left(\alpha_{0}\right) & \cdots & W_{N-1}\left(\alpha_{0}\right) \\
W_{0}\left(\alpha_{1}\right) & W_{1}\left(\alpha_{1}\right) & & \\
\vdots & & \ddots & \\
W_{0}\left(\alpha_{N-1}\right) & & & W_{N-1}\left(\alpha_{N-1}\right)
\end{array}\right]}
\end{array}\right] \cdot \frac{1}{2} \cdot\left[\begin{array}{ccccc}
2 & 2 & & \cdot & \cdot \\
2 & -1 & & & \\
& 1 & -1 & & \\
& & \cdot & \cdot & \\
\\
& & & \cdot & \cdot \\
& & & & \cdot \\
& & \\
& & &
\end{array}\right]
$$

Or

$$
\left[T_{l}\left(\alpha_{k}\right)\right]_{k=-1 \ldots N-1, l=0 . . N}=\left(I_{1} \oplus\left[W_{l}\left(\alpha_{k}\right)\right]_{k=0 \ldots N-1, l=0 \ldots N-1}\right) \cdot B
$$

By multiplication both sides by $\left(I_{1} \oplus \mathrm{D}\right) \cdot \mathrm{DCT} 1_{N+1}$, we can get final result

$$
\left(I_{1} \oplus \mathrm{D}\right) \cdot \mathrm{DCT}_{N+1}=\left(I_{1} \oplus \mathrm{DST}_{N}\right) \cdot B
$$

Appendix (Extracted tables)

	DCTs	DSTs
type 1	$\cos k \ell \frac{\pi}{n-1}$	$\sin (k+1)(\ell+1) \frac{\pi}{n+1}$
type 2	$\cos k\left(\ell+\frac{1}{2}\right) \frac{\pi}{n}$	$\left.\sin (k+1)\left(\ell+\frac{1}{2}\right) \frac{\pi}{n}\right)$
type 3	$\cos \left(k+\frac{1}{2}\right) \ell \frac{\pi}{n}$	$\sin \left(k+\frac{1}{2}\right) \overline{(\ell+1) \frac{\pi}{n}}$
type 4	$\cos \left(k+\frac{1}{2}\right)\left(\ell+\frac{1}{2}\right) \frac{\pi}{n}$	$\sin \left(k+\frac{1}{2}\right)\left(\ell+\frac{1}{2}\right) \frac{\pi}{n}$
type 5	$\cos k \ell \frac{\pi}{n-\frac{1}{2}}$	$\sin (k+1)(\ell+1) \frac{\pi}{n+\frac{1}{2}}$
type 6	$\cos k\left(\ell+\frac{1}{2}\right) \frac{\pi}{n-\frac{1}{2}}$	$\sin (k+1)\left(\ell+\frac{1}{2}\right) \frac{\pi}{n+\frac{1}{2}}$
type 7	$\cos \left(k+\frac{1}{2}\right) \ell \frac{\pi}{n-\frac{1}{2}}$	$\sin \left(k+\frac{1}{2}\right)(\ell+1) \frac{\pi}{n+\frac{1}{2}}$
type 8	$\cos \left(k+\frac{1}{2}\right)\left(\ell+\frac{1}{2}\right) \frac{\pi}{n+\frac{1}{2}}$	$\sin \left(k+\frac{1}{2}\right)\left(\ell+\frac{1}{2}\right) \frac{\pi}{n-\frac{1}{2}}$

Table 5.1. (page 12) (θ is marked by red lasso-line)

	$P_{n}-P_{n-2}$	P_{n}	$P_{n}-P_{n-1}$	$P_{n}+P_{n-1}$
T_{n}	$2\left(x^{2}-1\right) U_{n-2}$	T_{n}	$(x-1) W_{n-1}$	$(x+1) V_{n-1}$
U_{n}	$2 T_{n}$	U_{n}	V_{n}	W_{n}
V_{n}	$2(x-1) W_{n-1}$	V_{n}	$2(x-1) U_{n-1}$	$2 T_{n}$
W_{n}	$2(x+1) V_{n-1}$	W_{n}	$2 T_{n}$	$2(x+1) U_{n-1}$

Table 4.3 (page 11)

left b.c.	β_{1}	β_{2}
$a_{-1}=a_{1}$	0	2
$a_{-1}=0$	0	1
$a_{-1}=a_{0}$	1	1
$a_{-1}=-a_{0}$	-1	1

right b.c.	β_{3}	β_{4}
$a_{n}=a_{n-2}$	2	0
$a_{n}=0$	1	0
$a_{n}=a_{n-1}$	1	1
$a_{n}=-a_{n-1}$	1	-1

Table 5.3. (page 13)

			$a_{n}-a_{n-2}$	a_{n}	$a_{n}-a_{n-1}$	$a_{n}+a_{n-1}$
a_{1}	1	T_{ℓ}	$\begin{gathered} \text { DCT-1 } \\ 2\left(x^{2}-1\right) U_{n-2} \end{gathered}$	$\begin{gathered} \text { DCT-3 } \\ T_{n} \end{gathered}$	$\begin{gathered} \text { DCT-5 } \\ (x-1) W_{n-1} \end{gathered}$	$\begin{gathered} \text { DCT-7 } \\ (x+1) V_{n-1} \end{gathered}$
0	$\sin \theta$	U_{ℓ}	DST-3 $2 T_{n}$	$\begin{gathered} \text { DST-1 } \\ U_{n} \end{gathered}$	$\begin{gathered} \text { DST-7 } \\ V_{n} \end{gathered}$	$\begin{gathered} \text { DST-5 } \\ W_{n} \end{gathered}$
a_{0}	$\cos \frac{1}{2} \theta$	V_{ℓ}	$\begin{gathered} \text { DCT-6 } \\ 2(x-1) W_{n-1} \end{gathered}$	$\begin{gathered} \hline \text { DCT-8 } \\ V_{n} \\ \hline \end{gathered}$	$\begin{gathered} \text { DCT-2 } \\ 2(x-1) U_{n-1} \end{gathered}$	$\begin{gathered} \text { DCT-4 } \\ 2 T_{n} \end{gathered}$
$-a_{0}$	$\sin \frac{1}{2} \theta$	W_{ℓ}	DST-8 $2(x+1) V_{n-1}$	$\begin{gathered} \text { DST-6 } \\ W_{n} \end{gathered}$	DST-4 $2 T_{n}$	$\begin{gathered} \text { DST-2 } \\ 2(x+1) U_{n-1} \end{gathered}$

Table 6.1 (page 16)

	$a_{n}=a_{n-2}$	$a_{n}=0$	$a_{n}=a_{n-1}$	$a_{n}=-a_{n-1}$
$a_{-1}=a_{1}$	DCT-1	DCT-3	DCT-5	DCT-7
$a_{-1}=0$	DST-3	DST-1	DST-7	DST-5
$a_{-1}=a_{0}$	DCT-6	DCT-8	DCT-2	DCT-4
$a_{-1}=-a_{0}$	DST-8	DST-6	DST-4	DST-2

Table 5.3. (page 13)

	$n=0,1$	closed form	symmetry	zeros	weight $w(x)$
T_{n}	$1, x$	$\cos (n \theta)$	$T_{-n}=T_{n}$	$\cos \frac{\left(k+\frac{1}{2}\right) \pi}{n}$	$\frac{1}{\left(1-x^{2}\right)^{1 / 2}}$
U_{n}	$1,2 x$	$\frac{\sin (n+1) \theta}{\sin \theta}$	$U_{-n}=-U_{n-2}$	$\cos \frac{(k+1) \pi}{n+1}$	$\left(1-x^{2}\right)^{1 / 2}$
V_{n}	$1,2 x-1$	$\frac{\cos \left(n+\frac{1}{2}\right) \theta}{\cos \frac{1}{2} \theta}$	$V_{-n}=V_{n-1}$	$\cos \frac{\left(k+\frac{1}{2}\right) \pi}{n+\frac{1}{2}}$	$\frac{(1+x)^{1 / 2}}{(1-x)^{1 / 2}}$
W_{n}	$1,2 x+1$	$\frac{\sin \left(n+\frac{1}{2}\right) \theta}{\sin \frac{1}{2} \theta}$	$W_{-n}=-W_{n-1}$	$\cos \frac{(k+1) \pi}{n+\frac{1}{2}}$	$\frac{(1-x)^{1 / 2}}{(1+x)^{1 / 2}}$

Table 4.2. (page 10)

Reference

1. The Algebraic Approach to the Discrete Cosine and Sine Transforms and their Fast

Algorithms
SIAM Journal of Computing 2003, Vol. 32, No. 5, pp. 1280-1316

