Calculation of DST_IV using DST_III

Contents

Definitions

Result of transform is y=x*T, where y, x are row-vectors T is transform matrix

DST_IV matrix definition

N=8;
DST4=sin(pi/N*[(0:N-1)+1/2]'*[(0:N-1)+1/2])
DST4 =

    0.0980    0.2903    0.4714    0.6344    0.7730    0.8819    0.9569    0.9952
    0.2903    0.7730    0.9952    0.8819    0.4714   -0.0980   -0.6344   -0.9569
    0.4714    0.9952    0.6344   -0.2903   -0.9569   -0.7730    0.0980    0.8819
    0.6344    0.8819   -0.2903   -0.9952   -0.0980    0.9569    0.4714   -0.7730
    0.7730    0.4714   -0.9569   -0.0980    0.9952   -0.2903   -0.8819    0.6344
    0.8819   -0.0980   -0.7730    0.9569   -0.2903   -0.6344    0.9952   -0.4714
    0.9569   -0.6344    0.0980    0.4714   -0.8819    0.9952   -0.7730    0.2903
    0.9952   -0.9569    0.8819   -0.7730    0.6344   -0.4714    0.2903   -0.0980

DST_III matrix definition

DST3=sin(pi/N*[(0:N-1)+1/2]'*[(0:N-1)+1])
DST3 =

    0.1951    0.3827    0.5556    0.7071    0.8315    0.9239    0.9808    1.0000
    0.5556    0.9239    0.9808    0.7071    0.1951   -0.3827   -0.8315   -1.0000
    0.8315    0.9239    0.1951   -0.7071   -0.9808   -0.3827    0.5556    1.0000
    0.9808    0.3827   -0.8315   -0.7071    0.5556    0.9239   -0.1951   -1.0000
    0.9808   -0.3827   -0.8315    0.7071    0.5556   -0.9239   -0.1951    1.0000
    0.8315   -0.9239    0.1951    0.7071   -0.9808    0.3827    0.5556   -1.0000
    0.5556   -0.9239    0.9808   -0.7071    0.1951    0.3827   -0.8315    1.0000
    0.1951   -0.3827    0.5556   -0.7071    0.8315   -0.9239    0.9808   -1.0000

Finding relations

From [1] we know that DSTIV matrix can be expressed in terms of Tschebyshev polynomials

DSTIII matrix can be analogously expressed as

Because there exist relation

we can express DSTIII through DSTIV

where

B=diag(ones(1,N))+diag(ones(1,N-1),1);
D=2*diag(cos(pi/2/N*((0:N-1)+1/2)));

Check expression of DST_IV through DST_III

Check DSTIV matrix

inv(D)*DST3*B
ans =

    0.0980    0.2903    0.4714    0.6344    0.7730    0.8819    0.9569    0.9952
    0.2903    0.7730    0.9952    0.8819    0.4714   -0.0980   -0.6344   -0.9569
    0.4714    0.9952    0.6344   -0.2903   -0.9569   -0.7730    0.0980    0.8819
    0.6344    0.8819   -0.2903   -0.9952   -0.0980    0.9569    0.4714   -0.7730
    0.7730    0.4714   -0.9569   -0.0980    0.9952   -0.2903   -0.8819    0.6344
    0.8819   -0.0980   -0.7730    0.9569   -0.2903   -0.6344    0.9952   -0.4714
    0.9569   -0.6344    0.0980    0.4714   -0.8819    0.9952   -0.7730    0.2903
    0.9952   -0.9569    0.8819   -0.7730    0.6344   -0.4714    0.2903   -0.0980

Check computation of DSTIII transform

x=randn(1,N);
y=x*DST4            % true result
y1=x*inv(D)*DST3*B  % compute DSTIV using DSTIII transform
y =

   -2.7468   -0.8589    2.9686    0.3750   -0.0572    3.9822   -1.8763    0.3354


y1 =

   -2.7468   -0.8589    2.9686    0.3750   -0.0572    3.9822   -1.8763    0.3354

Check expression of DST_III through DST_IV

Check DSTIV matrix

D*DST4*inv(B)
ans =

    0.1951    0.3827    0.5556    0.7071    0.8315    0.9239    0.9808    1.0000
    0.5556    0.9239    0.9808    0.7071    0.1951   -0.3827   -0.8315   -1.0000
    0.8315    0.9239    0.1951   -0.7071   -0.9808   -0.3827    0.5556    1.0000
    0.9808    0.3827   -0.8315   -0.7071    0.5556    0.9239   -0.1951   -1.0000
    0.9808   -0.3827   -0.8315    0.7071    0.5556   -0.9239   -0.1951    1.0000
    0.8315   -0.9239    0.1951    0.7071   -0.9808    0.3827    0.5556   -1.0000
    0.5556   -0.9239    0.9808   -0.7071    0.1951    0.3827   -0.8315    1.0000
    0.1951   -0.3827    0.5556   -0.7071    0.8315   -0.9239    0.9808   -1.0000

Check computation of DSTIV transform

y=x*DST3            % true result
y1=x*D*DST4*inv(B)  % compute DSTIV using DSTIII transform
y =

   -3.0246    1.7402    2.2898   -1.0043    2.6802    1.6842   -2.4322    2.1756


y1 =

   -3.0246    1.7402    2.2898   -1.0043    2.6802    1.6842   -2.4322    2.1756

Reference

[1] Markus Pueschel, Jose M.F. Moura. The Algebraic Approach to the Discrete Cosine and Sine Transforms and their Fast Algorithms SIAM Journal of Computing 2003, Vol. 32, No. 5, pp. 1280-1316.