Relations between DCTV and DSTVI
Contents
- Definitions
- DCTV matrix definition
- DCTV in terms of Tschebyshev polynomials
- DSTVI matrix definition
- DSTVI in terms of Tschebyshev polynomials
- Finding relations
- Check expression of DCTV through DSTVI
- Check expression of DSTVI through DCTV
- Check computation of DCTV transform
- Check computation of DSTVI transform
Definitions
Transform matrix is defined for operating on column-vectors y=T*x, where y, x are column-vectors, T is transform matrix
DCTV matrix definition

N1=9; N=N1;
k=0:N1-1; l=0:N1-1;
DCT5=cos(pi/(N-1/2)*k'*l) % display DCTV matrix
DCT5 =
Columns 1 through 7
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 0.9325 0.7390 0.4457 0.0923 -0.2737 -0.6026
1.0000 0.7390 0.0923 -0.6026 -0.9830 -0.8502 -0.2737
1.0000 0.4457 -0.6026 -0.9830 -0.2737 0.7390 0.9325
1.0000 0.0923 -0.9830 -0.2737 0.9325 0.4457 -0.8502
1.0000 -0.2737 -0.8502 0.7390 0.4457 -0.9830 0.0923
1.0000 -0.6026 -0.2737 0.9325 -0.8502 0.0923 0.7390
1.0000 -0.8502 0.4457 0.0923 -0.6026 0.9325 -0.9830
1.0000 -0.9830 0.9325 -0.8502 0.7390 -0.6026 0.4457
Columns 8 through 9
1.0000 1.0000
-0.8502 -0.9830
0.4457 0.9325
0.0923 -0.8502
-0.6026 0.7390
0.9325 -0.6026
-0.9830 0.4457
0.7390 -0.2737
-0.2737 0.0923
DCTV in terms of Tschebyshev polynomials
The DCTV matrix can be expressed in terms of Tschebyshev polynomials [1]
![$${\mathbf {DCTV}} = \left[ {T_l \left( {\alpha _k } \right)} \right]_{k,l} $$](DCTV_DSTVI_eq28569.png)
where

are roots of polynomial

alpha=sort([roots(TschebyshevW(N-1)); 1],'descend'); DCT5t=zeros(N1); for l=0:N1-1, DCT5t(:,l+1)=polyval(TschebyshevT(l),alpha)'; end Da5=diag(cos(0*pi/(N-1/2)*k)); DCT5t=Da5*DCT5t % display DCTV matrix % compare DCT5 and DCT5t matrices (show that both definitions above are equivalent) max(max(abs(DCT5-DCT5t)))
DCT5t =
Columns 1 through 7
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 0.9325 0.7390 0.4457 0.0923 -0.2737 -0.6026
1.0000 0.7390 0.0923 -0.6026 -0.9830 -0.8502 -0.2737
1.0000 0.4457 -0.6026 -0.9830 -0.2737 0.7390 0.9325
1.0000 0.0923 -0.9830 -0.2737 0.9325 0.4457 -0.8502
1.0000 -0.2737 -0.8502 0.7390 0.4457 -0.9830 0.0923
1.0000 -0.6026 -0.2737 0.9325 -0.8502 0.0923 0.7390
1.0000 -0.8502 0.4457 0.0923 -0.6026 0.9325 -0.9830
1.0000 -0.9830 0.9325 -0.8502 0.7390 -0.6026 0.4457
Columns 8 through 9
1.0000 1.0000
-0.8502 -0.9830
0.4457 0.9325
0.0923 -0.8502
-0.6026 0.7390
0.9325 -0.6026
-0.9830 0.4457
0.7390 -0.2737
-0.2737 0.0923
ans =
2.5746e-13
DSTVI matrix definition

N2=8; N=N2;
k=0:N2-1; l=0:N2-1;
DST6=sin(pi/(N+1/2)*(k+1)'*(l+1/2)) % display DCTV matrix
DST6 =
Columns 1 through 7
0.1837 0.5264 0.7980 0.9618 0.9957 0.8952 0.6737
0.3612 0.8952 0.9618 0.5264 -0.1837 -0.7980 -0.9957
0.5264 0.9957 0.3612 -0.6737 -0.9618 -0.1837 0.7980
0.6737 0.7980 -0.5264 -0.8952 0.3612 0.9618 -0.1837
0.7980 0.3612 -0.9957 0.1837 0.8952 -0.6737 -0.5264
0.8952 -0.1837 -0.6737 0.9957 -0.5264 -0.3612 0.9618
0.9618 -0.6737 0.1837 0.3612 -0.7980 0.9957 -0.8952
0.9957 -0.9618 0.8952 -0.7980 0.6737 -0.5264 0.3612
Column 8
0.3612
-0.6737
0.8952
-0.9957
0.9618
-0.7980
0.5264
-0.1837
DSTVI in terms of Tschebyshev polynomials
The DSTVI matrix can be expressed in terms of Tschebyshev polynomials [1]
![$$
{\mathbf{DSTVI}}\mathrm{{=}}{\mathrm{\left[{{W}_{l}\left({{\mathit{\beta}}_{k}}\right)}\right]}}_{k\mathrm{,}l}
$$](DCTV_DSTVI_eq90027.png)
where

are roots of polynomial


beta=sort([roots(TschebyshevW(N))],'descend'); DST6t=zeros(N); for l=0:N2-1, DST6t(:,l+1)=polyval(TschebyshevW(l),beta)'; end Db6=diag(sin(1/2*pi/(N+1/2)*(k+1))); DST6t=Db6*DST6t % display DCTV matrix % compare DST6 and DST6t matrices (show that both definitions above are equivalent) max(max(abs(DST6-DST6t)))
DST6t =
Columns 1 through 7
0.1837 0.5264 0.7980 0.9618 0.9957 0.8952 0.6737
0.3612 0.8952 0.9618 0.5264 -0.1837 -0.7980 -0.9957
0.5264 0.9957 0.3612 -0.6737 -0.9618 -0.1837 0.7980
0.6737 0.7980 -0.5264 -0.8952 0.3612 0.9618 -0.1837
0.7980 0.3612 -0.9957 0.1837 0.8952 -0.6737 -0.5264
0.8952 -0.1837 -0.6737 0.9957 -0.5264 -0.3612 0.9618
0.9618 -0.6737 0.1837 0.3612 -0.7980 0.9957 -0.8952
0.9957 -0.9618 0.8952 -0.7980 0.6737 -0.5264 0.3612
Column 8
0.3612
-0.6737
0.8952
-0.9957
0.9618
-0.7980
0.5264
-0.1837
ans =
2.3470e-13
Finding relations
Because there exist relation

and

we can express DCTV through DSTVI
![$$ \begin{array}{l}
{{\mathbf{DCTV}}\mathrm{{=}}{\mathrm{\left[{{T}_{l}\left({{\mathrm{\alpha}}_{k}}\right)}\right]}}_{k\mathrm{,}l}\mathrm{{=}}{\mathrm{\left[{\begin{array}{cc}{1}&{}\\{}&{{W}_{l}\left({{\mathrm{\beta}}_{k}}\right)}\end{array}}\right]}}_{k\mathrm{,}l}\mathit{\cdot}{\mathbf{B}}\mathrm{{=}}\left[{\begin{array}{cc}{1}&{}\\{}&{{\left({{\mathbf{D}}_{DSTVI}}\right)}^{\mathrm{{-}}{1}}\mathit{\cdot}{\mathbf{D}}_{DSTVI}\mathit{\cdot}{\left[{{W}_{l}\left({{\mathit{\beta}}_{k}}\right)}\right]}_{k\mathrm{,}l}}\end{array}}\right]\mathit{\cdot}{\mathbf{B}}\mathrm{{=}}}\\
{\mathrm{{=}}\left[{\begin{array}{cc}{1}&{}\\{}&{{\left({{\mathbf{D}}_{DSTVI}}\right)}^{\mathrm{{-}}{1}}\mathrm{\cdot}{\mathbf{DSTVI}}}\end{array}}\right]\mathrm{\cdot}{\mathbf{B}}}
\end{array} $$](DCTV_DSTVI_eq82534.png)
where
![$${\mathbf{B}}\mathrm{{=}}\mathrm{\frac{1}{2}}\mathrm{\left[{\begin{array}{cccccc}{2}&{2}&{2}&{\cdots}&{2}&{2}\\{2}&{{-}{1}}&{}&{}&{}&{}\\{}&{1}&{{-}{1}}&{}&{}&{}\\{}&{}&{1}&{\ddots}&{}&{}\\{}&{}&{}&{\ddots}&{{-}{1}}&{}\\{}&{}&{}&{}&{1}&{{-}{1}}\end{array}}\right]}$$](DCTV_DSTVI_eq85411.png)
B=toeplitz([0.5 zeros(1,N-1)]',[0.5 -0.5 zeros(1,N-length([0.5 -0.5]))]); B(1,1)=1; B=[B [0; B(1:end-1,end)]]; B=[ones(1,size(B,2)); B];
Check expression of DCTV through DSTVI
![$${\mathbf{DCTV}}\mathrm{{=}}\mathrm{\left[{\begin{array}{cc}{1}&{}\\{}&{{\left({{\mathbf{D}}_{DSTVI}}\right)}^{{-}{1}}\cdot{\mathbf{DSTVI}}}\end{array}}\right]}\mathrm{\cdot}{\mathbf{B}}$$](DCTV_DSTVI_eq22075.png)
DCT5a=Da5*blkdiag(1,inv(Db6)*DST6)*B
% compare DCT5 and DCT5a matrices (show correctness of representation of DCTV through DSTVI)
max(max(abs(DCT5-DCT5a)))
DCT5a =
Columns 1 through 7
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 0.9325 0.7390 0.4457 0.0923 -0.2737 -0.6026
1.0000 0.7390 0.0923 -0.6026 -0.9830 -0.8502 -0.2737
1.0000 0.4457 -0.6026 -0.9830 -0.2737 0.7390 0.9325
1.0000 0.0923 -0.9830 -0.2737 0.9325 0.4457 -0.8502
1.0000 -0.2737 -0.8502 0.7390 0.4457 -0.9830 0.0923
1.0000 -0.6026 -0.2737 0.9325 -0.8502 0.0923 0.7390
1.0000 -0.8502 0.4457 0.0923 -0.6026 0.9325 -0.9830
1.0000 -0.9830 0.9325 -0.8502 0.7390 -0.6026 0.4457
Columns 8 through 9
1.0000 1.0000
-0.8502 -0.9830
0.4457 0.9325
0.0923 -0.8502
-0.6026 0.7390
0.9325 -0.6026
-0.9830 0.4457
0.7390 -0.2737
-0.2737 0.0923
ans =
1.6653e-15
Check expression of DSTVI through DCTV
![$$\left[{\begin{array}{cc}{1}&{}\\{}&{\mathbf{DSTVI}}\end{array}}\right]\mathrm{{=}}\mathrm{\left[{\begin{array}{cc}{1}&{}\\{}&{{\mathbf{D}}_{DSTVI}}\end{array}}\right]}\mathrm{\cdot}{\mathbf{DCTV}}\mathrm{\cdot}{\mathbf{B}}^{\mathrm{{-}}{1}}$$](DCTV_DSTVI_eq87268.png)
DST6a=blkdiag(1,Db6)*inv(Da5)*DCT5*inv(B);
DST6a=DST6a(2:end,2:end)
% compare DST6 and DST6a matrices (show correctness of representation of DSTVI through DCTV)
max(max(abs(DST6-DST6a)))
DST6a =
Columns 1 through 7
0.1837 0.5264 0.7980 0.9618 0.9957 0.8952 0.6737
0.3612 0.8952 0.9618 0.5264 -0.1837 -0.7980 -0.9957
0.5264 0.9957 0.3612 -0.6737 -0.9618 -0.1837 0.7980
0.6737 0.7980 -0.5264 -0.8952 0.3612 0.9618 -0.1837
0.7980 0.3612 -0.9957 0.1837 0.8952 -0.6737 -0.5264
0.8952 -0.1837 -0.6737 0.9957 -0.5264 -0.3612 0.9618
0.9618 -0.6737 0.1837 0.3612 -0.7980 0.9957 -0.8952
0.9957 -0.9618 0.8952 -0.7980 0.6737 -0.5264 0.3612
Column 8
0.3612
-0.6737
0.8952
-0.9957
0.9618
-0.7980
0.5264
-0.1837
ans =
3.1086e-15
Check computation of DCTV transform
x=randn(N1,1); disp('x''=');disp(x'); y=DCT5*x; % true result disp('y''=');disp(y'); y1=Da5*blkdiag(1,inv(Db6)*DST6)*B*x; % compute DCTV using DSTVI transform disp('y1''=');disp(y1');
x'=
Columns 1 through 7
-0.8095 -2.9443 1.4384 0.3252 -0.7549 1.3703 -1.7115
Columns 8 through 9
-0.1022 -0.2414
y'=
Columns 1 through 7
-3.4300 -1.4360 -3.2739 -3.4892 -1.3389 -2.7776 0.3708
Columns 8 through 9
5.7705 1.0085
y1'=
Columns 1 through 7
-3.4300 -1.4360 -3.2739 -3.4892 -1.3389 -2.7776 0.3708
Columns 8 through 9
5.7705 1.0085
Check computation of DSTVI transform
x=randn(N2,1); disp('x''=');disp(x'); y=DST6*x; % true result disp('y''=');disp(y'); y1=blkdiag(1,Db6)*inv(Da5)*DCT5*inv(B)*[0;x]; % compute DSTVI using DCTV transform disp('y1''=');disp(y1'); % Reference
x'=
Columns 1 through 7
0.3192 0.3129 -0.8649 -0.0301 -0.1649 0.6277 1.0933
Column 8
1.1093
y'=
Columns 1 through 7
1.0392 -2.7589 2.0960 0.1857 1.1443 0.8074 0.2884
Column 8
-0.9837
y1'=
Columns 1 through 7
0.0000 1.0392 -2.7589 2.0960 0.1857 1.1443 0.8074
Columns 8 through 9
0.2884 -0.9837