Relations between DCTV and DSTV
Contents
- Definitions
- DCTV matrix definition
- DCTV in terms of Tschebyshev polynomials
- DSTV matrix definition
- DSTV in terms of Tschebyshev polynomials
- Finding relations
- Check expression of DCTV through DSTV
- Check expression of DSTV through DCTV
- Check computation of DCTV transform
- Check computation of DSTV transform
- Reference
Definitions
Transform matrix is defined for operating on column-vectors y=T*x, where y, x are column-vectors, T is transform matrix
DCTV matrix definition
N1=9; N=N1;
k=0:N1-1; l=0:N1-1;
DCT5=cos(pi/(N-1/2)*k'*l) % display DCTV matrix
DCT5 = Columns 1 through 7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9325 0.7390 0.4457 0.0923 -0.2737 -0.6026 1.0000 0.7390 0.0923 -0.6026 -0.9830 -0.8502 -0.2737 1.0000 0.4457 -0.6026 -0.9830 -0.2737 0.7390 0.9325 1.0000 0.0923 -0.9830 -0.2737 0.9325 0.4457 -0.8502 1.0000 -0.2737 -0.8502 0.7390 0.4457 -0.9830 0.0923 1.0000 -0.6026 -0.2737 0.9325 -0.8502 0.0923 0.7390 1.0000 -0.8502 0.4457 0.0923 -0.6026 0.9325 -0.9830 1.0000 -0.9830 0.9325 -0.8502 0.7390 -0.6026 0.4457 Columns 8 through 9 1.0000 1.0000 -0.8502 -0.9830 0.4457 0.9325 0.0923 -0.8502 -0.6026 0.7390 0.9325 -0.6026 -0.9830 0.4457 0.7390 -0.2737 -0.2737 0.0923
DCTV in terms of Tschebyshev polynomials
The DCTV matrix can be expressed in terms of Tschebyshev polynomials [1]
where
are roots of polynomial
alpha=sort([roots(TschebyshevW(N-1)); 1],'descend'); DCT5t=zeros(N1); for l=0:N1-1, DCT5t(:,l+1)=polyval(TschebyshevT(l),alpha)'; end Da5=diag(cos(0*pi/(N-1/2)*k)); DCT5t=Da5*DCT5t % display DCTV matrix % compare DCT5 and DCT5t matrices (show that both definitions above are equivalent) max(max(abs(DCT5-DCT5t)))
DCT5t = Columns 1 through 7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9325 0.7390 0.4457 0.0923 -0.2737 -0.6026 1.0000 0.7390 0.0923 -0.6026 -0.9830 -0.8502 -0.2737 1.0000 0.4457 -0.6026 -0.9830 -0.2737 0.7390 0.9325 1.0000 0.0923 -0.9830 -0.2737 0.9325 0.4457 -0.8502 1.0000 -0.2737 -0.8502 0.7390 0.4457 -0.9830 0.0923 1.0000 -0.6026 -0.2737 0.9325 -0.8502 0.0923 0.7390 1.0000 -0.8502 0.4457 0.0923 -0.6026 0.9325 -0.9830 1.0000 -0.9830 0.9325 -0.8502 0.7390 -0.6026 0.4457 Columns 8 through 9 1.0000 1.0000 -0.8502 -0.9830 0.4457 0.9325 0.0923 -0.8502 -0.6026 0.7390 0.9325 -0.6026 -0.9830 0.4457 0.7390 -0.2737 -0.2737 0.0923 ans = 2.5746e-13
DSTV matrix definition
N2=8; N=N2;
k=0:N2-1; l=0:N2-1;
DST5=sin(pi/(N+1/2)*(k+1)'*(l+1)) % display DCTV matrix
DST5 = Columns 1 through 7 0.3612 0.6737 0.8952 0.9957 0.9618 0.7980 0.5264 0.6737 0.9957 0.7980 0.1837 -0.5264 -0.9618 -0.8952 0.8952 0.7980 -0.1837 -0.9618 -0.6737 0.3612 0.9957 0.9957 0.1837 -0.9618 -0.3612 0.8952 0.5264 -0.7980 0.9618 -0.5264 -0.6737 0.8952 0.1837 -0.9957 0.3612 0.7980 -0.9618 0.3612 0.5264 -0.9957 0.6737 0.1837 0.5264 -0.8952 0.9957 -0.7980 0.3612 0.1837 -0.6737 0.1837 -0.3612 0.5264 -0.6737 0.7980 -0.8952 0.9618 Column 8 0.1837 -0.3612 0.5264 -0.6737 0.7980 -0.8952 0.9618 -0.9957
DSTV in terms of Tschebyshev polynomials
The DSTV matrix can be expressed in terms of Tschebyshev polynomials [1]
where
are roots of polynomial
beta=sort([roots(TschebyshevW(N))],'descend'); DST5t=zeros(N); for l=0:N2-1, DST5t(:,l+1)=polyval(TschebyshevU(l),beta)'; end Db5=diag(sin(pi/(N+1/2)*(k+1))); DST5t=Db5*DST5t % display DCTV matrix % compare DST5 and DST5t matrices (show that both definitions above are equivalent) max(max(abs(DST5-DST5t)))
DST5t = Columns 1 through 7 0.3612 0.6737 0.8952 0.9957 0.9618 0.7980 0.5264 0.6737 0.9957 0.7980 0.1837 -0.5264 -0.9618 -0.8952 0.8952 0.7980 -0.1837 -0.9618 -0.6737 0.3612 0.9957 0.9957 0.1837 -0.9618 -0.3612 0.8952 0.5264 -0.7980 0.9618 -0.5264 -0.6737 0.8952 0.1837 -0.9957 0.3612 0.7980 -0.9618 0.3612 0.5264 -0.9957 0.6737 0.1837 0.5264 -0.8952 0.9957 -0.7980 0.3612 0.1837 -0.6737 0.1837 -0.3612 0.5264 -0.6737 0.7980 -0.8952 0.9618 Column 8 0.1837 -0.3612 0.5264 -0.6737 0.7980 -0.8952 0.9618 -0.9957 ans = 1.4100e-13
Finding relations
Because there exist relation
and
we can express DCTV through DSTV
where
B=toeplitz([0.5 zeros(1,N-1)]',[0.5 0 -0.5 zeros(1,N-length([0.5 0 -0.5]))]); B(1,1)=1; B=[B [0; B(1:end-1,end)]]; B(8,9)=-0.5; B=[ones(1,size(B,2)); B];
Check expression of DCTV through DSTV
DCT5a=Da5*blkdiag(1,inv(Db5)*DST5)*B
% compare DCT5 and DCT5a matrices (show correctness of representation of DCTV through DSTV)
max(max(abs(DCT5-DCT5a)))
DCT5a = Columns 1 through 7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9325 0.7390 0.4457 0.0923 -0.2737 -0.6026 1.0000 0.7390 0.0923 -0.6026 -0.9830 -0.8502 -0.2737 1.0000 0.4457 -0.6026 -0.9830 -0.2737 0.7390 0.9325 1.0000 0.0923 -0.9830 -0.2737 0.9325 0.4457 -0.8502 1.0000 -0.2737 -0.8502 0.7390 0.4457 -0.9830 0.0923 1.0000 -0.6026 -0.2737 0.9325 -0.8502 0.0923 0.7390 1.0000 -0.8502 0.4457 0.0923 -0.6026 0.9325 -0.9830 1.0000 -0.9830 0.9325 -0.8502 0.7390 -0.6026 0.4457 Columns 8 through 9 1.0000 1.0000 -0.8502 -0.9830 0.4457 0.9325 0.0923 -0.8502 -0.6026 0.7390 0.9325 -0.6026 -0.9830 0.4457 0.7390 -0.2737 -0.2737 0.0923 ans = 1.9429e-15
Check expression of DSTV through DCTV
DST5a=blkdiag(1,Db5)*inv(Da5)*DCT5*inv(B);
DST5a=DST5a(2:end,2:end)
% compare DST5 and DST5a matrices (show correctness of representation of DSTV through DCTV)
max(max(abs(DST5-DST5a)))
DST5a = Columns 1 through 7 0.3612 0.6737 0.8952 0.9957 0.9618 0.7980 0.5264 0.6737 0.9957 0.7980 0.1837 -0.5264 -0.9618 -0.8952 0.8952 0.7980 -0.1837 -0.9618 -0.6737 0.3612 0.9957 0.9957 0.1837 -0.9618 -0.3612 0.8952 0.5264 -0.7980 0.9618 -0.5264 -0.6737 0.8952 0.1837 -0.9957 0.3612 0.7980 -0.9618 0.3612 0.5264 -0.9957 0.6737 0.1837 0.5264 -0.8952 0.9957 -0.7980 0.3612 0.1837 -0.6737 0.1837 -0.3612 0.5264 -0.6737 0.7980 -0.8952 0.9618 Column 8 0.1837 -0.3612 0.5264 -0.6737 0.7980 -0.8952 0.9618 -0.9957 ans = 1.5543e-15
Check computation of DCTV transform
x=randn(N1,1); disp('x''=');disp(x'); y=DCT5*x; % true result disp('y''=');disp(y'); y1=Da5*blkdiag(1,inv(Db5)*DST5)*B*x; % compute DCTV using DSTV transform disp('y1''=');disp(y1');
x'= Columns 1 through 7 -0.1241 1.4897 1.4090 1.4172 0.6715 -1.2075 0.7172 Columns 8 through 9 1.6302 0.4889 y'= Columns 1 through 7 6.4922 1.0315 1.6055 -2.3749 -2.9026 2.0955 -1.6228 Columns 8 through 9 -1.7966 -0.3369 y1'= Columns 1 through 7 6.4922 1.0315 1.6055 -2.3749 -2.9026 2.0955 -1.6228 Columns 8 through 9 -1.7966 -0.3369
Check computation of DSTV transform
x=randn(N2,1); disp('x''=');disp(x'); y=DST5*x; % true result disp('y''=');disp(y'); y1=blkdiag(1,Db5)*inv(Da5)*DCT5*inv(B)*[0;x]; % compute DSTV using DCTV transform disp('y1''=');disp(y1');
x'= Columns 1 through 7 1.0347 0.7269 -0.3034 0.2939 -0.7873 0.8884 -1.1471 Column 8 -1.0689 y'= Columns 1 through 7 0.0359 2.2056 0.4258 2.7480 -1.2166 2.3001 -1.0191 Column 8 -1.8927 y1'= Columns 1 through 7 -0.0000 0.0359 2.2056 0.4258 2.7480 -1.2166 2.3001 Columns 8 through 9 -1.0191 -1.8927
Reference
[1] Markus Pueschel, Jose M.F. Moura. The Algebraic Approach to the Discrete Cosine and Sine Transforms and their Fast Algorithms SIAM Journal of Computing 2003, Vol. 32, No. 5, pp. 1280-1316.