Relations between DCTVII and DCTVIII
Contents
- Definitions
- DCTVII matrix definition
- DCTVII in terms of Tschebyshev polynomials
- DCTVIII matrix definition
- DCTVIII in terms of Tschebyshev polynomials
- Finding relations
- Check expression of DCTVII through DCTVIII
- Check expression of DCTVIII through DCTVII
- Check computation of DCTVII transform
- Check computation of DCTVIII transform
Definitions
Transform matrix is defined for operating on column-vectors y=T*x, where y, x are column-vectors, T is transform matrix
DCTVII matrix definition
N1=9; N=N1;
k=0:N1-1; l=0:N1-1;
DCT7=cos(pi/(N-1/2)*(k+1/2)'*l) % display DCTV matrix
DCT7 = Columns 1 through 7 1.0000 0.9830 0.9325 0.8502 0.7390 0.6026 0.4457 1.0000 0.8502 0.4457 -0.0923 -0.6026 -0.9325 -0.9830 1.0000 0.6026 -0.2737 -0.9325 -0.8502 -0.0923 0.7390 1.0000 0.2737 -0.8502 -0.7390 0.4457 0.9830 0.0923 1.0000 -0.0923 -0.9830 0.2737 0.9325 -0.4457 -0.8502 1.0000 -0.4457 -0.6026 0.9830 -0.2737 -0.7390 0.9325 1.0000 -0.7390 0.0923 0.6026 -0.9830 0.8502 -0.2737 1.0000 -0.9325 0.7390 -0.4457 0.0923 0.2737 -0.6026 1.0000 -1.0000 1.0000 -1.0000 1.0000 -1.0000 1.0000 Columns 8 through 9 0.2737 0.0923 -0.7390 -0.2737 0.9830 0.4457 -0.9325 -0.6026 0.6026 0.7390 -0.0923 -0.8502 -0.4457 0.9325 0.8502 -0.9830 -1.0000 1.0000
DCTVII in terms of Tschebyshev polynomials
The DCTVII matrix can be expressed in terms of Tschebyshev polynomials [1]
where
are roots of polynomial
alpha=sort([roots(TschebyshevV(N-1)); -1],'descend'); DCT7t=zeros(N1); for l=0:N1-1, DCT7t(:,l+1)=polyval(TschebyshevT(l),alpha)'; end Da7=diag(cos(0*pi/(N-1/2)*(k+1/2))); DCT7t=Da7*DCT7t % display DCTV matrix % compare DCT7 and DCT7t matrices (show that both definitions above are equivalent) max(max(abs(DCT7-DCT7t)))
DCT7t = Columns 1 through 7 1.0000 0.9830 0.9325 0.8502 0.7390 0.6026 0.4457 1.0000 0.8502 0.4457 -0.0923 -0.6026 -0.9325 -0.9830 1.0000 0.6026 -0.2737 -0.9325 -0.8502 -0.0923 0.7390 1.0000 0.2737 -0.8502 -0.7390 0.4457 0.9830 0.0923 1.0000 -0.0923 -0.9830 0.2737 0.9325 -0.4457 -0.8502 1.0000 -0.4457 -0.6026 0.9830 -0.2737 -0.7390 0.9325 1.0000 -0.7390 0.0923 0.6026 -0.9830 0.8502 -0.2737 1.0000 -0.9325 0.7390 -0.4457 0.0923 0.2737 -0.6026 1.0000 -1.0000 1.0000 -1.0000 1.0000 -1.0000 1.0000 Columns 8 through 9 0.2737 0.0923 -0.7390 -0.2737 0.9830 0.4457 -0.9325 -0.6026 0.6026 0.7390 -0.0923 -0.8502 -0.4457 0.9325 0.8502 -0.9830 -1.0000 1.0000 ans = 2.5778e-13
DCTVIII matrix definition
N2=8; N=N2;
k=0:N2-1; l=0:N2-1;
DCT8=cos(pi/(N+1/2)*(k+1/2)'*(l+1/2)) % display DCTV matrix
DCT8 = Columns 1 through 7 0.9957 0.9618 0.8952 0.7980 0.6737 0.5264 0.3612 0.9618 0.6737 0.1837 -0.3612 -0.7980 -0.9957 -0.8952 0.8952 0.1837 -0.6737 -0.9957 -0.5264 0.3612 0.9618 0.7980 -0.3612 -0.9957 -0.1837 0.8952 0.6737 -0.5264 0.6737 -0.7980 -0.5264 0.8952 0.3612 -0.9618 -0.1837 0.5264 -0.9957 0.3612 0.6737 -0.9618 0.1837 0.7980 0.3612 -0.8952 0.9618 -0.5264 -0.1837 0.7980 -0.9957 0.1837 -0.5264 0.7980 -0.9618 0.9957 -0.8952 0.6737 Column 8 0.1837 -0.5264 0.7980 -0.9618 0.9957 -0.8952 0.6737 -0.3612
DCTVIII in terms of Tschebyshev polynomials
The DCTVIII matrix can be expressed in terms of Tschebyshev polynomials [1]
where
are roots of polynomial
beta=sort([roots(TschebyshevV(N))],'descend'); DCT8t=zeros(N); for l=0:N2-1, DCT8t(:,l+1)=polyval(TschebyshevV(l),beta)'; end Db8=diag(cos(1/2*pi/(N+1/2)*(k+1/2))); DCT8t=Db8*DCT8t % display DCTV matrix % compare DCT8 and DCT8t matrices (show that both definitions above are equivalent) max(max(abs(DCT8-DCT8t)))
DCT8t = Columns 1 through 7 0.9957 0.9618 0.8952 0.7980 0.6737 0.5264 0.3612 0.9618 0.6737 0.1837 -0.3612 -0.7980 -0.9957 -0.8952 0.8952 0.1837 -0.6737 -0.9957 -0.5264 0.3612 0.9618 0.7980 -0.3612 -0.9957 -0.1837 0.8952 0.6737 -0.5264 0.6737 -0.7980 -0.5264 0.8952 0.3612 -0.9618 -0.1837 0.5264 -0.9957 0.3612 0.6737 -0.9618 0.1837 0.7980 0.3612 -0.8952 0.9618 -0.5264 -0.1837 0.7980 -0.9957 0.1837 -0.5264 0.7980 -0.9618 0.9957 -0.8952 0.6737 Column 8 0.1837 -0.5264 0.7980 -0.9618 0.9957 -0.8952 0.6737 -0.3612 ans = 2.3428e-13
Finding relations
Because there exist relation
and
we can express DCTVII through DCTVIII
where
B=toeplitz([0.5 zeros(1,N-1)]',[0.5 0.5 zeros(1,N-length([0.5 0.5]))]); B(1,1)=1; B=[B [0; B(1:end-1,end)]]; B=[B; (-1).^(0:size(B,2)-1)];
Check expression of DCTVII through DCTVIII
DCT7a=Da7*blkdiag(inv(Db8)*DCT8,1)*B
% compare DCT7 and DCT7a matrices (show correctness of representation of DCTVII through DCTVIII)
max(max(abs(DCT7-DCT7a)))
DCT7a = Columns 1 through 7 1.0000 0.9830 0.9325 0.8502 0.7390 0.6026 0.4457 1.0000 0.8502 0.4457 -0.0923 -0.6026 -0.9325 -0.9830 1.0000 0.6026 -0.2737 -0.9325 -0.8502 -0.0923 0.7390 1.0000 0.2737 -0.8502 -0.7390 0.4457 0.9830 0.0923 1.0000 -0.0923 -0.9830 0.2737 0.9325 -0.4457 -0.8502 1.0000 -0.4457 -0.6026 0.9830 -0.2737 -0.7390 0.9325 1.0000 -0.7390 0.0923 0.6026 -0.9830 0.8502 -0.2737 1.0000 -0.9325 0.7390 -0.4457 0.0923 0.2737 -0.6026 1.0000 -1.0000 1.0000 -1.0000 1.0000 -1.0000 1.0000 Columns 8 through 9 0.2737 0.0923 -0.7390 -0.2737 0.9830 0.4457 -0.9325 -0.6026 0.6026 0.7390 -0.0923 -0.8502 -0.4457 0.9325 0.8502 -0.9830 -1.0000 1.0000 ans = 2.1649e-15
Check expression of DCTVIII through DCTVII
DCT8a=blkdiag(Db8,1)*inv(Da7)*DCT7*inv(B);
DCT8a=DCT8a(1:end-1,1:end-1)
% compare DCT8 and DCT8a matrices (show correctness of representation of DCTVIII through DCTVII)
max(max(abs(DCT8-DCT8a)))
DCT8a = Columns 1 through 7 0.9957 0.9618 0.8952 0.7980 0.6737 0.5264 0.3612 0.9618 0.6737 0.1837 -0.3612 -0.7980 -0.9957 -0.8952 0.8952 0.1837 -0.6737 -0.9957 -0.5264 0.3612 0.9618 0.7980 -0.3612 -0.9957 -0.1837 0.8952 0.6737 -0.5264 0.6737 -0.7980 -0.5264 0.8952 0.3612 -0.9618 -0.1837 0.5264 -0.9957 0.3612 0.6737 -0.9618 0.1837 0.7980 0.3612 -0.8952 0.9618 -0.5264 -0.1837 0.7980 -0.9957 0.1837 -0.5264 0.7980 -0.9618 0.9957 -0.8952 0.6737 Column 8 0.1837 -0.5264 0.7980 -0.9618 0.9957 -0.8952 0.6737 -0.3612 ans = 1.8874e-15
Check computation of DCTVII transform
x=randn(N1,1); disp('x''=');disp(x'); y=DCT7*x; % true result disp('y''=');disp(y'); y1=Da7*blkdiag(inv(Db8)*DCT8,1)*B*x; % compute DCTVII using DCTVIII transform disp('y1''=');disp(y1');
x'= Columns 1 through 7 -0.7423 -1.0616 2.3505 -0.6156 0.7481 -0.1924 0.8886 Columns 8 through 9 -0.7648 -1.4023 y'= Columns 1 through 7 0.3768 -0.7363 -2.7897 -0.7917 -4.5927 -0.2618 -2.2207 Columns 8 through 9 2.4680 4.4770 y1'= Columns 1 through 7 0.3768 -0.7363 -2.7897 -0.7917 -4.5927 -0.2618 -2.2207 Columns 8 through 9 2.4680 4.4770
Check computation of DCTVIII transform
x=randn(N2,1); disp('x''=');disp(x'); y=DCT8*x; % true result disp('y''=');disp(y'); y1=blkdiag(Db8,1)*inv(Da7)*DCT7*inv(B)*[x;0]; % compute DCTVIII using DCTVII transform disp('y1''=');disp(y1'); % Reference
x'= Columns 1 through 7 -1.4224 0.4882 -0.1774 -0.1961 1.4193 0.2916 0.1978 Column 8 1.5877 y'= Columns 1 through 7 0.2109 -3.4368 -0.0534 -1.2631 0.3469 -4.0060 -0.1737 Column 8 0.2406 y1'= Columns 1 through 7 0.2109 -3.4368 -0.0534 -1.2631 0.3469 -4.0060 -0.1737 Columns 8 through 9 0.2406 0.0000